

ADOBE SYSTEMS INCORPORATED

Corporate Headquarters

345 Park Avenue
San Jose, CA 95110-2704

(408) 536-6000
http://partners.adobe.com

bbc

May 2003

Technical Note #5150

Version : Acrobat 6.0

pdfmark Reference
Manual

Copyright 2003 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication (whether in hardcopy or
electronic form) may be reproduced or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the Adobe Systems Incorporated.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name PostScript in the text are references to the
PostScript language as defined by Adobe Systems Incorporated unless otherwise stated. The name PostScript also is used as a product
trademark for Adobe Systems’ implementation of the PostScript language interpreter.

Except as otherwise stated, any reference to a “PostScript printing device,” “PostScript display device,” or similar item refers to a printing device,
display device or item (respectively) that contains PostScript technology created or licensed by Adobe Systems Incorporated and not to devices
or items that purport to be merely compatible with the PostScript language.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Capture, Distiller, PostScript, the PostScript logo and Reader are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Apple, Macintosh, and Power Macintosh are trademarks of Apple Computer, Inc., registered in the United States and other countries. PowerPC
is a registered trademark of IBM Corporation in the United States. ActiveX, Microsoft, Windows, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. UNIX is a registered trademark of The Open
Group. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies,
makes no warranty of any kind (express, implied, or statutory) with respect to this publication, and expressly disclaims any and all warranties
of merchantability, fitness for particular purposes, and noninfringement of third party rights.

pdfmark Reference Manual

3

Contents

Preface . 7

Purpose . 7

Audience . 7

Contents . 7

Other Useful Documentation . 8

Chapter 1 pdfmark Syntax and Use . 9

What is the pdfmark Operator? . 9

Syntax of the pdfmark Operator . 9

Using pdfmark with Standard PostScript Interpreters . 10

Syntax for Private Keys . 13

Named Objects . 13

Built-In Named Objects . 13

User-Defined Named Objects . 14

Namespaces . 15

Adding Content to Named Objects. 16

Chapter 2 Basic pdfmark Features . 19

Annotations (ANN) . 19

Notes. 23

Links . 24

Other Annotations . 24

Bookmarks (OUT) . 25

Articles (ARTICLE) . 26

Page Cropping (PAGES, PAGE) . 27

Info Dictionary (DOCINFO) . 28

Document Open Options (DOCVIEW) . 29

Page Label and Plate Color (PAGELABEL) . 30

Marked Content (MP, DP, BMC, BDC, EMC) . 30

Marked-Content Points . 31

Marked-content sequences . 31

Naming Graphics (BP, EP, SP) . 31

Contents

4

pdfmark Reference Manual

Naming Images (NI) . 32

Transparency (SetTransparency) . 33

Transparency Group XObject and Soft Mask . 35

Add Metadata to the Catalog (Metadata) . 37

Embedded File Content (EMBED) . 37

Compatibility Notes . 38

Old-style Links (LNK) . 38

Pass-through PostScript Commands (PS) . 39

Chapter 3 Specifying Actions and Destinations 41

Actions . 41

GoTo Actions . 42

GotoR Actions . 42

Launch Actions . 43

Article Actions . 44

Destinations . 44

View Destinations. 45

Defining Named Destinations . 46

Referencing Named Destinations . 47

Chapter 4 Logical Structure. . 49

Elements and Parents . 49

Structure Operators . 49

Structure Tree Root. 50

StRoleMap . 50

StClassMap . 51

Elements . 51

StPNE . 51

StBookmarkRoot . 53

StPush . 53

StPop. 54

StPopAll . 54

StUpdate . 54

Specifying Element Content . 54

StBMC . 54

StBDC . 55

EMC . 55

StOBJ. 55

pdfmark Reference Manual

5

Contents

Attribute Objects . 56

StAttr. 56

Storing and Retrieving the Implicit Parent Stack . 56

StStore . 57

StRetrieve . 57

EPS Considerations . 57

Tagged PDF . 58

Chapter 5 Examples . 59

Ignore pdfmark if not defined in the PostScript interpreter . 59

Notes . 59

Simple note . 59

Fancy note . 59

Private Data in Note . 60

Links . 60

Simple Link (old style, compatible with all Distiller application versions) 60

Link . 60

Fancy link . 60

Link that launches another file. 61

Custom link action (URI link for the Acrobat WebLink plug-in). 61

Custom link action (named action) . 61

Custom annotation type . 62

Movie annotation . 62

Bookmarks . 62

Articles . 63

Article action. 63

Create text for the article “Now is the Time” . 63

Article containing two beads . 63

Page Cropping . 64

Crop this page . 64

Crop all pages . 64

Info Dictionary . 64

File Open Action . 65

Page Label . 65

Named Destinations . 65

Definition of named destination . 65

Link to a named destination . 65

Named Objects . 66

Contents

6

pdfmark Reference Manual

Creating user-defined named objects . 66

Adding values to named objects . 66

Creating an annotation as a named object and adding content to it. 66

Using a named object as a value . 66

Putting a file’s contents into a text annotation. 67

Using OBJ to add an open action to a PDF File . 67

Using OBJ to create a base URI. 67

Using OBJ and PUT pdfmarks to create an alternate image. 67

Using the Graphics Encapsulation pdfmark Names (BP, EP, SP) . 68

Creating a picture . 68

Using BP and EP pdfmarks to define button faces for forms . 70

Forms Examples. 71

Define the AcroForm dictionary at the document Catalog . 71

Define the Widget annotations, which are also field dictionaries for this form 73

Structure Examples. 76

A simple structure . 76

PDF output resulting from code in previous section . 77

A bookmark for a structural element. 78

Interrupted structure. 78

Independence of logical and physical structure. 79

Page break within logical structure. 80

Logical Structure Out-of-order in Physical Structure . 81

Tagged PDF . 82

Appendix A pdfmark for JDF . 87

pdfmark Reference Manual

7

Preface

The Acrobat

®

 Distiller

®

 application is a PostScript-language interpreter that converts
PostScript

®

 language files into Portable Document Format (PDF) files. Because PDF has
features (such as annotations, bookmarks, articles, and forms) that are not expressable
using the standard PostScript operators, some PostScript language extension is necessary
to describe features that are present in PDF, but not in standard PostScript.

To satisfy this need, Acrobat Distiller provides the operator

pdfmark

 that is not found in
standard PostScript interpreters.

The use of

pdfmark

 allows an independent software vendor (ISV) already using the
PostScript language to express, in PostScript syntax, idioms that are converted by Acrobat
Distiller to PDF without having to write PDF files directly.

Purpose

This document describes the syntax and use of the

pdfmark

 operator, and contains
examples of many of the features that can be implemented using

pdfmark

.

Audience

This document is intended for those who use, are about to use, or wish to understand

pdfmark

 constructs in PostScript code intended for conversion to PDF by Acrobat Distiller.
Those using

pdfmark

 typically do so in one of the following ways:

●

by manual creation or modification of PostScript code;

●

by filtering or post-processing existing PostScript code; or,

●

by an application that directly generates

pdfmark

 constructs as part of its PostScript
code generation.

Contents

Chapter 1, “pdfmark Syntax and Use,” describes the

pdfmark

 operator, its syntax, and its use
by Acrobat Distiller and other PostScript interpreters. It also discusses the use of named
objects.

Chapter 2, “Basic pdfmark Features,” describes the basic forms of the

pdfmark

 operator.

Chapter 3, “Specifying Actions and Destinations,” goes into detail about how to specify
actions and destinations.

Chapter 4, “Logical Structure,” describes how to implement logical structure in PDF.

Preface

Other Useful Documentation

8

pdfmark Reference Manual

Chapter 5, “Examples,” gives several examples of using

pdfmark

.

Appendix A, “pdfmark for JDF,” describes the use of

pdfmark

with JDF files.

Other Useful Documentation

Making full use of

pdfmark

 requires knowledge of both PostScript and PDF. The following
documents are available from both book stores and online at:

●

PostScript Language Reference

, 3rd edition, ISBN 0201379228
http://partners.adobe.com/asn/developer/technotes/postscript.html

●

PDF Reference

, 3rd edition, version 1.4, ISBN 0201758393
http://partners.adobe.com/asn/developer/acrosdk/docs.html#filefmtspecs

In addition, a software development kit (the Acrobat SDK) consisting of documentation,
headers, and sample code that enables software developers to access the functionality of
the Acrobat product suite can be found at:
http://partners.adobe.com/asn/developer/acrosdk/main.html

http://partners.adobe.com/asn/developer/technotes/postscript.html
http://partners.adobe.com/asn/developer/acrosdk/main.html
http://partners.adobe.com/asn/developer/acrosdk/docs.html#filefmtspecs

pdfmark Reference Manual

9

1

pdfmark Syntax and Use

This chapter describes the

pdfmark

operator, its syntax, and its use by Acrobat Distiller and
other PostScript interpreters. It also describes how built-in and user-defined PDF objects
are referred to and defined.

What is the pdfmark Operator?

The

pdfmark

 operator is not a standard PostScript operator, but is provided as a PostScript-
language extension used by Acrobat Distiller to describe features that are present in PDF,
but not in standard PostScript. The

pdfmark

 operator has been available beginning with
Acrobat Distiller 3.0, and, as an extensible operator, has evolved with each release of the
PDF specification. This document describes

pdfmark

 as it applies to PDF version 1.5 and
corresponds to the Acrobat 6.0 suite of products.

N

O T E

:

While the

pdfmark

 operator provides for greater extensibility, it is not intended to
define every feature that is present in PDF but not in standard PostScript.

Syntax of the pdfmark Operator

The

pdfmark

 operator requires the following syntax:

[

any

1

 ... any

n

 feature

 pdfmark

that:

●

begins with a mark object (either

mark

 or

[

);

●

is followed by zero or more PostScript objects called the

arguments

 of the

pdfmark

operator; and,

●

concludes with a name object that indicates the particular

feature

 that the

pdfmark

operator is to apply.

N

O T E

:

Any instance of the

pdfmark

 operator, the mark, its arguments, and the feature
name in a PostScript program is referred to as a

pdfmark

 in this document.

N

O T E

:

Frequently, the arguments for a given feature are sequences of key-value pairs.
Many of the pdfmark keys correspond directly to PDF dictionary keys. However,
some keys may be new, entirely different, or abbreviated forms of keys as found in
PDF dictionaries. For example, the PDF

Subtype

 key may become the pdfmark key

S

,

Dest

 may become

D

, and

File

 may become

F

, and so forth. See the

PDF Reference

for
more information on PDF keys.

pdfmark Syntax and Use

Using pdfmark with Standard PostScript Interpreters

1

10

pdfmark Reference Manual

The

pdfmark

 operator does not change the operand nor the dictionary stacks, but may alter
the execution, graphics state, or clipping stacks, depending on the particular pdfmark
feature.

Using pdfmark with Standard PostScript Interpreters

The pdfmark operator is an extension of the PostScript language that is implemented in
Acrobat Distiller, but is not available in many other PostScript products. Therefore, if a
PostScript program containing pdfmark constructs is to used by these other products, it is
necessary to ensure that these other products take some reasonable response when
encountering the

pdfmark

 operator.

One reasonable response is ignore pdfmark constructs. This can be accomplished by
defining a

pdfmark

 procedure that discards the pdfmark code for interpreters in which the

pdfmark

 operator does not exist. One possible way to do this is to place the following code
in the prolog of a PostScript program:

%%BeginProlog
/pdfmark where % Is pdfmark already available?

{ pop } % Yes: do nothing (use that definition)
{ % No: define pdfmark as follows:
/globaldict where % globaldict is preferred because

{ pop globaldict } % globaldict is always visible; else,
{ userdict } % use userdict otherwise.

ifelse
/pdfmark /cleartomark load put
} % Define pdfmark to remove all objects

ifelse % up to and including the mark object.
%%EndProlog

This code example works on PostScript Level 1 and above interpreters. In the examples that
follow, PostScript Level 2 or higher is assumed to simplify the presentation of the examples.

Most pdfmark features are

atomic

. That is, the pdfmark construct stands alone and, if
removed, does not affect surrounding PostScript. A few pdfmark features, on the other
hand, are

modal

. A modal feature is one that, once completed, leaves the interpreter in a
different state. Most modal features are paired: one feature shifts to a new state and a
corresponding feature shifts back to the previous state. For example, consider:

[

any

1

 ...

any

n /BeginFeature pdfmark
additional PostScript code
[any1 ... anym /EndFeature pdfmark

pdfmark Reference Manual 11

pdfmark Syntax and Use
Using pdfmark with Standard PostScript Interpreters

1

If it is desired to make the additional PostScript code conditional on the availability of the
pdfmark operator, then the above definition of pdfmark needs to be improved.

%%BeginProlog
/pdfmark where

{ pop globaldict /?pdfmark /exec load put } % pdfmark is built-in: exec code.
{
globaldict

begin
/?pdfmark /pop load def % pdfmark is absent: ignore code.
/pdfmark /cleartomark load def
end

}
ifelse
%%EndProlog

With this the handling of modal code can be performed as:

[any1 ... anyn /BeginFeature pdfmark
{ additional PostScript code } ?pdfmark
[any1 ... anym /EndFeature pdfmark

pdfmark Syntax and Use
Using pdfmark with Standard PostScript Interpreters

1

12 pdfmark Reference Manual

While the above solution is sufficient in most circumstances, it might be desirable to define
a pdfmark procedure to handle individual features. The following example demonstrates a
simple framework for handling individual pdfmark features:

%%BeginProlog
currentglobal currentpacking % Because the pdfmark definition below uses
true setglobal true setpacking % composite objects, we need to make sure the

% procedure is defined in global VM mode.
/pdfmark where

{ pop globaldict /?pdfmark /exec load put}
{
globaldict

begin
/?pdfmark /pop load def
/pdfmark

{
{ counttomark pop } % Check to see that a mark is on the stack.

stopped
{ /pdfmark errordict /unmatchedmark get exec stop }

if % Raise an error if no mark is found.
dup type /nametype ne % The topmost argument must be the feature.

{ /pdfmark errordict /typecheck get exec stop }
if % The feature must be a name object.

{
dup /FEATURE1 eq

{ (Interpreting FEATURE 1\n) print cleartomark exit }
if % Replace the above code with actual code
dup /FEATURE2 eq

{ (Interpreting FEATURE 2\n) print cleartomark exit }
if % Replace the above code with actual code
(Feature not supported:) print == cleartomark exit

% Replace the above code with actual code
}

loop
} bind def

end
}

ifelse
setpacking setglobal % Restore to original modes.
%%EndProlog

In the above code, the name objects FEATUREn would be replaced with actual pdfmark
feature names and the code that follows the dup /FEATUREn eq would be replaced with code
that consumes all of the arguments and the mark object.

In the examples that follow in this document, the ?pdfmark definition is assumed to be as
shown above. To work correctly with non-Distiller PostScript interpreters, any production
implementation of these or additional definitions must take into account factors such as
PostScript level, VM allocation modes, packing modes, and others.

pdfmark Reference Manual 13

pdfmark Syntax and Use
Syntax for Private Keys

1

Syntax for Private Keys

Some features can accept arbitrary key–value pairs, providing a way of placing private data
into PDF files. All keys must be name objects. Unless otherwise stated, values must be
boolean, number, string, name, array, or dictionary objects. Array elements must be
boolean, number, string, or name objects.

When specifying arbitrary key–value pairs, key names must contain a specific prefix to
ensure that they do not collide with key names used by other developers. Contact Adobe’s
Developer Technologies group to obtain a prefix to be used by your company or
organization.

N O T E : The private key names in this technical note use Adobe’s prefix ADBE.

Named Objects

This section describes how built-in and user-defined PDF objects are referred to and
defined.

Built-In Named Objects

A PDF file contains built-in objects such as the Catalog and Page dictionaries. To refer to
one of these dictionaries in a pdfmark construct, a syntax called a named object:

{objname}

is used where objname is one of:

● Catalog — the PDF file’s Catalog dictionary

● DocInfo — the PDF file’s Info dictionary

● PageN — the dictionary for page N (where N is a positive integer)

● ThisPage — the dictionary for the current page being processed in the PostScript
stream

● PrevPage — the dictionary for the page before the current page

● NextPage — the dictionary for the page after the current page

N O T E : The objname used here is not a standard PostScript name object; that is, it does not
start with a slash “/” but instead is surrounded with braces “{}”; it otherwise follows
the syntax of PostScript name objects. The objname serves as a reference name to
identify particular PDF objects and has no relationship to any identifier created in
the resultant PDF file.

pdfmark Syntax and Use
Named Objects

1

14 pdfmark Reference Manual

User-Defined Named Objects

In addition to built-in named objects, user-defined named objects may be created. The
syntax to specify a user-defined named object is:

[/_objdef {objname} /type objtype /OBJ pdfmark

The name /_objdef indicates that a named object is to be defined and is followed by the
{objname}. The object type, objtype, specifies the PDF type of named object that is to be
created and must be one of the following name objects:

● /array — to create an array;

● /dict — to create a dictionary; or,

● /stream — to create a stream.

N O T E : The feature /OBJ is used only to declare a particular objname and its associated type.
Other pdfmark features are required to associate this objname with actual content
and to have some existing PDF object refer to it.

Here is an example in which the named object “galaxy” is declared to be a dictionary type:

[/_objdef {galaxy} /type /dict /OBJ pdfmark

A few pdfmark features allow for the definition of a named object as part of the argument
list. In these cases, the modified syntax is:

[/_objdef {objname} any1 ... anyn feature pdfmark

In this case, the objname is not only created, but also refers to the PDF object created as a
result of the pdfmark feature. The type entry is not used because the feature implicitly
provides this information. The following features support this syntax:

● ANN — annotation

● BP — encapsulated graphic

● DEST — named destination

● NI — encapsulated image

● StPNE — structure element

Named objects created in any of the above ways can be used in the definition of other
named objects. That is, an {objname} can be used as an argument in a pdfmark construct as
the value of a key–value pair or as an element in an array. In these cases, Distiller places an
indirect reference to the object that {objname} is associated with in the PDF file.

N O T E : A pdfmark construct can make an object reference {objname} before defining the
object {objname}. That is, the {objname} can be in the argument list of a pdfmark
construct before it is defined. If {objname} is never defined, it is left as an unresolved
reference in the cross-reference table. Hence, any consumer of such a PDF file must
be able to handle unresolved references.

pdfmark Reference Manual 15

pdfmark Syntax and Use
Named Objects

1

Namespaces

When using named objects in PostScript programs, it is possible that the same name might
be used more than once. To help avoid conflicts in name object definitions, Acrobat Distiller
provides a means for specifying the scope in which named objects have well-defined
meaning.

In addition to the standard 5 PostScript stacks (see PostScript Language Reference, third
edition, Section 3.4, on page 45, Acrobat Distiller maintains a stack of namespaces. The
namespace stack is similar to the PostScript dictionary stack, except that only the top-most
namespace name objects are visible. The namespace stack is also similar to the graphics
state stack, except that no currentgstate analog is provided. A namespace contains:

● Names for user-defined named objects (see “User-Defined Named Objects” on page 14)

● Names for stored implicit parent stacks (see “StStore” on page 57)

● Names for images (see “Naming Images (NI)” on page 32)

The appropriate use of namespaces can help ensure that PostScript file construction
containing code from various sources that use pdfmark constructs does not have named-
object conflicts. A common example is the handling of Encapsulated PostScript files (see
“EPS Considerations” on page 57).

N O T E : The built-in named objects are managed separately from the namespace stack and
are always visible.

The following pdfmark features are available for manipulating namespaces:

1. NamespacePush causes a new, empty namespace to be pushed onto the namespace
stack and causes all other namespaces to be hidden. The syntax for pushing a
namespace is:

[/NamespacePush pdfmark

2. NamespacePop pops the topmost namespace from the stack. Once a namespace has
been popped, it can not be accessed again. The next lower namespace on the stack
becomes the current namespace.

The syntax for popping a namespace is:

[/NamespacePop pdfmark

A warning will be issued by Acrobat Distiller if NamespacePop is encountered when the
namespace stack is empty.

%%[Warning: /NamespacePop pdfmark ignored: No matching NamespacePush]%%

N O T E : There are no pdfmark features to save or restore namespaces.

pdfmark Syntax and Use
Named Objects

1

16 pdfmark Reference Manual

Adding Content to Named Objects

Once a named object has been declared, content can be added to the PDF object that it
refers to. There are several pdfmark features to accomplish this for each of the types of
named objects.

Arrays

There are several methods for adding content to array named objects. The most basic of
these is the PUT feature, taking the syntax:

[{arrayname} index value /PUT pdfmark

The PUT feature inserts the value argument at the location index. Indices start at 0, and the
array grows automatically to hold the largest index specified. Unspecified entries are
created as NULL objects. For example:

[/_objdef {MoonInfo} /type /array /OBJ pdfmark
[{MoonInfo} 0 (Earth to Moon) /PUT pdfmark
[{MoonInfo} 1 238855 /PUT pdfmark
[{MoonInfo} 2 /miles /PUT pdfmark

The above code creates an array object and populates it with objects of various types. Note,
at this point, the named object cannot be reached because there are no entries in the PDF
file’s cross-reference table or file trailer that lead to it.

Adding array objects as above can become tedious. When adding objects to contiguous
array index positions, the pdfmark feature PUTINTERVAL can simplify this task. The syntax
for this feature is:

[{arrayname} index [value1 ... valuen] /PUTINTERVAL pdfmark

The operation of this feature is the same as in PostScript: value1 is placed in arraynameindex,
value2 is placed in arraynameindex+1, and so forth. The array is resized if necessary to hold
the objects added. The previous example can be simplified to:

[/_objdef {MoonInfo} /type /array /OBJ pdfmark
[{MoonInfo} 0 [(Earth to Moon) 238855 /miles] /PUTINTERVAL pdfmark

One additional convenience for adding objects to array is available: the APPEND feature.
This feature adds one additional entry immediately after the end of the array. Its syntax is:

[{arrayname} value /APPEND pdfmark

Dictionaries

The PUT feature can also be used to add dictionary content. The named object can be
either a built-in name, such as {Catalog} or {Page37}, or a user-defined object name.

For dictionary named objects, the syntax of the PUT feature is:

[{dictname} <<key1 value1 ... keyn valuen >> /PUT pdfmark

For dictionary named objects, PUT adds the key–value pairs provided as arguments.
Continuing the previous example:

[{Catalog} << /TheMoon {MoonInfo} >> /PUT pdfmark

pdfmark Reference Manual 17

pdfmark Syntax and Use
Named Objects

1

This adds a key–value pair to the PDF Catalog dictionary. The inserted key is /TheMoon and
the value is an indirect object. To illustrate this, the resultant PDF file might have the
following content:

trailer
<< … /Root 9 0 R … >>
…
9 0 obj << … /Type /Catalog … /TheMoon 3 0 R … >>
endobj
3 0 obj [(Earth to Moon)238855/miles]
endobj

Notice that the named object MoonInfo does not appear in the resultant PDF file, but the
object it referred to, 3 0 obj in this case, does.

Streams

For stream named objects, the syntax can take several forms:

[{streamname} string /PUT pdfmark
[{streamname} file /PUT pdfmark
[{streamname} <<key1 value1 ... keyn valuen >> /PUT pdfmark

A stream object consists of a sequence of bytes, its character data, and an associated
dictionary. When the stream named object is created, the character data is empty. The
source of stream data can come from an explicit string or can be read from a PostScript file
object (a file or filter), in which case reading proceeds until the end of file is reached.

In addition to the character data, a stream has an associated PDF dictionary. Some
dictionary entries such as Length are created automatically. Key–value pairs that do not
conflict with the keys common to PDF stream dictionaries can be added to this dictionary.
The resultant PDF object associated with the stream named object is always compressed
using a lossless method that can be specified in Acrobat Distiller’s Adobe PDF Settings
dialog.

The CLOSE feature closes a stream object created by pdfmark and has the syntax:

[{streamname} /CLOSE pdfmark

The named stream object is closed and written to the PDF file. The {streamname} is still valid
and may be referenced by other objects, but it can no longer be written to. When Distiller
completes writing a PDF file, any open streams are closed and written automatically.

For example:

[/_objdef {MoonNotes} /type /stream /OBJ pdfmark
[{MoonNotes} (Hipparchus around 129 BC calculated the distance to the Moon.\n)

/PUT pdfmark
[{MoonNotes} (The Moon was first touched by Armstrong on July 20, 1969.\n)

/PUT pdfmark
[{MoonNotes} << /Author (Steve Amerige) /Company (Adobe) >> /PUT pdfmark
[{Catalog} << /MoonNotes {MoonNotes} >> /PUT pdfmark
[{MoonNotes} /CLOSE pdfmark

pdfmark Syntax and Use
Named Objects

1

18 pdfmark Reference Manual

pdfmark Reference Manual 19

2 Basic pdfmark Features

This chapter describes the basic pdfmark features. In general, the key–value pairs used as
arguments for pdfmark follow closely the key–value pairs that appear in the PDF file. See
the latest version of the PDF Reference for a description of the PDF file format.

The following pdfmark features are described in this chapter:

● Annotations (ANN)

● Bookmarks (OUT)

● Articles (ARTICLE)

● Page Cropping (PAGES, PAGE)

● Info Dictionary (DOCINFO)

● Document Open Options (DOCVIEW)

● Page Label and Plate Color (PAGELABEL)

● Marked Content (MP, DP, BMC, BDC, EMC)

● Naming Graphics (BP, EP, SP)

● Naming Images (NI)

● Transparency (SetTransparency)

● Add Metadata to the Catalog (Metadata)

Other pdfmark features are defined in other chapters of this document.

Annotations (ANN)

PDF supports several types of annotations. The properties of each annotation are specified
in an annotation dictionary containing various key–value pairs. Section 8.4 of the PDF
Reference describes all the types of annotations, and their required and optional dictionary
entries.

The pdfmark operator using the feature name ANN is used to specify an annotation in a
PostScript file. The general syntax is:

[/Rect [xll yll xur yur]
/Subtype name
…Optional key–value pairs…
/ANN pdfmark

Basic pdfmark Features
Annotations (ANN)

2

20 pdfmark Reference Manual

Table 2.1 describes the two required keys for annotations.

As of PDF 1.3, the following annotation types are supported:

TABLE 2.1 Required annotation keys

Key Type Semantics

Rect array An array of four numbers [xll, yll, xur, yur] specifying the lower-left x,
lower-left y, upper-right x, and upper-right y coordinates—in user
space—of the rectangle defining the open note window or link
button.

Subtype name The annotation’ s PDF subtype. If omitted, the value defaults to Text,
indicating a note annotation. See Table 2.2 for the possible
subtypes that can be used.

TABLE 2.2 PDF annotation types

Value of Subtype key Description

Text Text annotation (note)

Link Link annotation

FreeText Free text annotation

Line Line annotation

Square Square annotation

Circle Circle annotation

Highlight Highlight annotation

Underline Underline annotation

StrikeOut Strikeout annotation

Stamp Rubber stamp annotation

Ink Ink annotation

Popup Pop-up annotation

FileAttachment File attachment annotation

Sound Sound annotation

Movie Movie annotation

Widget Widget annotation

TrapNet Trap network annotation

pdfmark Reference Manual 21

Basic pdfmark Features
Annotations (ANN)

2

Each type has its own set of key-value pairs that may be specified, as described in the PDF
Reference. Future versions of PDF may introduce new types.

In addition to these types, annotations with unrecognized Subtype values, called custom
annotations, are supported. Custom annotations may contain, in addition to the Rect and
Subtype keys, arbitrary key–value pairs.

EXAMPLE 2.1 Custom Annotation

[/Rect [400 435 500 535]
/Subtype /ADBETest_DummyType
/ADBETest_F8Array [0 1 1 2 3 5 8 13]
/ANN pdfmark

When viewed with Acrobat Viewer, this annotation appears with an unknown annotation
icon.

Table 2.3 lists optional keys that are common to all annotations. Specific annotation types
have additional keys that they use. See section 8.4 of the PDF Reference (Version 1.4, 3rd
Edition) for complete information.

TABLE 2.3 Optional annotation keys

Key Type Semantics

SrcPg integer The sequence number of the page on which the annotation
appears. (The first page in a document is always page 1.) If this key is
present, the pdfmark may be placed anywhere in the PostScript
language file. If omitted, the pdfmark must occur within the
PostScript language description for the page on which the
annotation is to appear.

Color

(PDF key =
C)

array A color value used for the background of the annotation’s icon
when closed; the title bar of the annotation’s pop-up window; and
the border of a link annotation.
The value is an array containing three numbers (red, green, and
blue), each of which must be between 0 and 1, inclusive, specifying
a color in the DeviceRGB color space. (See Section 4.5.3 in the PDF
Reference for a description of this color space.) If omitted, a default
color is used.

Title

(PDF key =
T)

string The text label to be displayed in the title bar of the annotation’s
pop-up window when open and active.
The encoding and character set used is either PDFDocEncoding (as
described in Appendix D in the PDF Reference) or Unicode. If
Unicode, the string must begin with <FEFF>. For example, the string
“ABC” is represented as (ABC) in PDFDocEncoding and
<FEFF004100420043> in Unicode. Title has a maximum length of
255 PDFDocEncoding characters or 126 Unicode values, although a
practical limit of 32 characters is advised so that it can be read easily
in the Acrobat viewer.

Basic pdfmark Features
Annotations (ANN)

2

22 pdfmark Reference Manual

“Notes” on page 23 and “Links” on page 24 describe the syntax for two of the original and
most commonly used annotation types in more detail.

ModDate

(PDF key =
M)

string The date and time the note was last modified. It should be of the
form:
(D:YYYYMMDDHHmmSSOHH'mm')
“D:” is an optional but strongly recommended prefix. YYYY is the
year. All fields after the year are optional. MM is the month (01-12),
DD is the day (01-31), HH is the hour (00-23), mm are the minutes (00-
59), and SS are the seconds (00-59). The remainder of the string
defines the relation of local time to GMT. O is either + for a positive
difference (local time is later than GMT) or - (minus) for a negative
difference. HH' is the absolute value of the offset from GMT in hours,
and mm' is the absolute value of the offset in minutes. If no GMT
information is specified, the relation between the specified time
and GMT is considered unknown. Regardless of whether or not GMT
information is specified, the remainder of the string should specify
the local time.

Border array The link’s border properties. Border is an array containing three
numbers and, optionally, an array. All elements are specified in user
space coordinates.
If Border is of the form [bx by c], the numbers specify the horizontal
corner radius (bx), the vertical corner radius (by), and the width (c) of
the link’s border. The link has a solid border.
If it is of the form [bx by c [d]], the fourth element (d) is a dash array
that specifies the lengths of dashes and gaps in the link’s border.
The default value for Border is [0 0 1].

F integer A set of flags specifying various characteristics. See Section 8.4.2 of
the PDF Reference.

AP dictionary An appearance dictionary specifying how the annotation is
presented visually. See Section 8.4.4 of the PDF Reference for details.

AS name The annotation’s appearance state. See Section 8.4.4 of the PDF
Reference for details.

Action

(PDF key =
A)

name or
dictionary

An action to be performed when the annotation is activated. See
“Actions” on page 41 for details.

N O T E : For links, this key is not permitted if the Dest key is present.

TABLE 2.3 Optional annotation keys

Key Type Semantics

pdfmark Reference Manual 23

Basic pdfmark Features
Annotations (ANN)

2

Notes

Notes are known as text annotations in PDF. The syntax for creating a note is:

[/Contents string
/Rect [xll yll xur yur]
/SrcPg pagenum
/Open boolean
/Color array
/Title string
/ModDate datestring
/Name name
/Subtype /Text
/ANN pdfmark

In addition to the keys described in Table 2.1 and Table 2.3, the keys specific to text
annotations are listed in Table 2.4. In addition to these keys, notes may also specify
arbitrary key–value pairs.

EXAMPLE 2.2 Text Annotation

[/Contents (My unimaginative contents)
/Rect [400 550 500 650]
/Open false
/Title (My Boring Title)
% The following is private data. Keys within the private
% dictionary do not need to use the organization’s prefix
% because the dictionary encapsulates them.
/ADBETest_MyInfo

<<
/Routing [(Me) (You)]
/Test_Privileges << /Me /All /You /ReadOnly >>
>>

/ADBETest_PrivFlags 42
/ANN pdfmark

TABLE 2.4 Keys specific to Text annotations

Key Type Semantics

Contents string (Required) Contains the note’s text string. The maximum length of
the Contents string is 65,535 characters. The encoding and character
set used is the PDFDocEncoding (described in Appendix D in the
PDF Reference or Unicode. If Unicode, the string must begin with
<FEFF>.

Open boolean (Optional) If true, the note is open (that is, the text is visible). If false
(the default if omitted), the note is closed (that is, displayed as an
icon).

Name name (Optional) The name of an icon to be used in displaying the note.
The values are: Note (default), Comment, Help, Insert, Key,
NewParagraph, Paragraph.

Basic pdfmark Features
Annotations (ANN)

2

24 pdfmark Reference Manual

Links

A link annnotation represents either a hypertext link to a destination in the document, or
an action to be performed.

The usual syntax for creating a link is:

[/Rect [xll yll xur yur]
/Border [bx by c [d]]
/SrcPg pagenum
/Color array
/Subtype /Link
… Action-or-destination-specifying key–value pairs …
/ANN pdfmark

In addition to the keys described in Table 2.1 and Table 2.3, a link may also contain keys
specifying destinations or actions, described in Chapter 3, “Specifying Actions and
Destinations.”

EXAMPLE 2.3 Link Annotation

[/Rect [70 550 210 575]
/Border [0 0 2 [3]]
/Color [0 1 0]
/Page /Next
/View [/XYZ -5 797 1.5]
/Subtype /Link
/ANN pdfmark

Other Annotations

Table 2.2 lists the other types of annotations that are available. For example, consider the
following movie annotation.

EXAMPLE 2.4 Movie Annotation

[/Subtype /Movie
/Rect [216 503 361 612]
/T (Title)
/F 1
% The specified file may be a movie or sound file
% Add your movie in place of "(/Disk/moviefile)"
/Movie << /F (/Disk/moviefile) /Aspect [160 120] >>
/A << /ShowControls true >>
/Border [0 0 3]
/C [0 0 1]
/ANN pdfmark

One useful type of annotation is the widget annotation. Widgets are used by PDF interactive
forms to represent the appearance of fields and to manage user interactions. See Section
8.6 of the PDF Reference for detailed information on using interactive forms.

See “Define the Widget annotations, which are also field dictionaries for this form” on
page 73 for examples of using widget annotations to create interactive forms.

pdfmark Reference Manual 25

Basic pdfmark Features
Bookmarks (OUT)

2

Bookmarks (OUT)

Bookmarks are known as outline items in PDF. They are specified by using the pdfmark
operator in conjunction with the feature name OUT.

The syntax for a bookmark pdfmark is:

[/Title string
/Count int
/Color array
/F integer
…Action-specifying key–value pairs…
/OUT pdfmark

TABLE 2.5 Bookmark Attributes

Key Type Semantics

Title string (Required) The bookmark’s text. The encoding and character set
used is either PDFDocEncoding (as described in Appendix D in the
PDF Reference) or Unicode. If Unicode, the string must begin with
<FEFF>. For example, the Unicode string for (ABC) is
<FEFF004100420043>. Title has a maximum length of 255
PDFDocEncoding characters or 126 Unicode values, although a
practical limit of 32 characters is advised so that it can be read easily
in the Acrobat viewer.

Count integer (Required if the bookmark has subordinate bookmarks, omitted
otherwise) This key’s absolute value is the number of bookmarks
immediately subordinate—that is, excluding subordinates of
subordinates. If the value is positive, the bookmark is open,
revealing its subordinates; if negative, the bookmark is closed,
hiding its subordinates.

N O T E : This differs from the PDFCount key, which represents the total
number of open descendants at all lower levels of the outline
hierarchy.

Color array (Optional, effective beginning with Acrobat 5.0) The bookmark’s color.
The value is an array containing three numbers (red, green, and
blue), each of which must be between 0 and 1, inclusive, specifying
a color in the DeviceRGB color space. (See Section 4.5.3 in the PDF
Reference for a description of this color space.)

Basic pdfmark Features
Articles (ARTICLE)

2

26 pdfmark Reference Manual

In addition to the keys listed in Table 2.5, a bookmark must contain key–value pairs that
specify an action. See Chapter 3, “Specifying Actions and Destinations,” for more
information.

The bookmark pdfmarks may begin anywhere in the PostScript language file. However,
they must appear in sequential order.

See “Bookmarks” on page 62 for examples of bookmark pdfmarks.

Articles (ARTICLE)

Articles consist of a title and a list of rectangular areas called beads. Each bead is specified by
using the pdfmark operator in conjunction with the feature name ARTICLE. Beads are
added to the article in the order that they are encountered in the PostScript language file.

The syntax for a bead pdfmark is:

[/Title string
/Rect [xll yll xur yur]
/Page pagenum
/ARTICLE pdfmark

F integer (Optional, effective beginning with Acrobat 5.0) The style of the
bookmark. Four styles are implemented:
● 0: Plain (the default)
● 1: Italic
● 2: Bold
● 3: Bold and Italic

TABLE 2.6 Article Bead Attributes

Key Type Semantics

Title string (Required) The title of the article to which a bead belongs. The
encoding and character set used is either PDFDocEncoding (as
described in Appendix D in the PDF Reference) or Unicode. If
Unicode, the string must begin with <FEFF>. For example, the
Unicode string for (ABC) is <FEFF004100420043>. Title has a
maximum length of 255 PDFDocEncoding characters or 126
Unicode values, although a practical limit of 32 characters is advised
so that it can be read easily in the Acrobat viewer.

Rect array (Required) An array of four numbers [xll, yll, xur, yur] specifying the
lower-left x, lower-left y, upper-right x, and upper-right y
coordinates—in user space—of the rectangle defining the bead.

TABLE 2.5 Bookmark Attributes

Key Type Semantics

pdfmark Reference Manual 27

Basic pdfmark Features
Page Cropping (PAGES, PAGE)

2

In addition to the keys listed in Table 2.6 the first bead in an article may also specify
arbitrary key–value pairs. Suggested keys are Subject, Author, and Keywords.

N O T E : Articles do not support dictionaries as values in arbitrary key–value pairs.

See “Articles” on page 63 for examples of articles.

Page Cropping (PAGES, PAGE)

Page cropping is used to specify the dimensions of a page or pages in a PDF file that will be
displayed or printed (without altering the actual data in the file). Cropping is specified by
using the pdfmark operator in conjunction with the names PAGES (for the entire document)
or PAGE (for an individual page).

The syntax for specifying the default page cropping for a document is:

[/CropBox [xll yll xur yur]
/PAGES pdfmark

The syntax for specifying a non-default page cropping for a particular page in a document
is:

[/CropBox [xll yll xur yur]
/PAGE pdfmark

The CropBox key is an array representing the location and size of the viewable area of the
page. CropBox is an array of four numbers [xll, yll, xur, yur] specifying the lower-left x, lower-
left y, upper-right x, and upper-right y coordinates—measured in default user space—of
the rectangle defining the cropped page. The minimum allowed page size is .04 x .04 inch
(3 x 3 units) and the maximum allowed page size is 200 x 200 inches (14,400 x 14,400 units)
in the default user space coordinate system.

The PAGES pdfmark can be placed anywhere in the PostScript language program, but it is
recommended that it be placed at the beginning of the file, in the Document Setup section
between the document structuring comments %%BeginSetup and %%EndSetup, before
any marks are placed on the first page.

The PAGE pdfmark must be placed before the showpage operator for the page it is to affect.
It is recommended that it be placed before any marks are made on the page. For example, it

Page integer (Optional) The sequence number of the page on which the bead is
located. A bead pdfmark that contains the optional Page key may be
placed anywhere in the PostScript language file. A bead pdfmark
that does not contain this key must occur within the PostScript
language description for the page on which the article bead is to
appear.

TABLE 2.6 Article Bead Attributes

Key Type Semantics

Basic pdfmark Features
Info Dictionary (DOCINFO)

2

28 pdfmark Reference Manual

affects only the first page of a document if it is placed before any marks are made on the
first page.

See “Page Cropping” on page 64 for examples of cropping.

Info Dictionary (DOCINFO)

A document’s Info dictionary contains key–value pairs that provide various pieces of
information about the document. Info dictionary information is specified by using the
pdfmark operator in conjunction with the name DOCINFO.

The syntax for specifying Info dictionary entries is:

[/Author string
/CreationDate string
/Creator string
/Producer string
/Title string
/Subject string
/Keywords string
/ModDate string
/DOCINFO pdfmark

All the allowable keys are strings, and they are all optional. In addition to the keys listed in
Table 2.7, arbitrary keys (which must also take string values) can be specified.

TABLE 2.7 Info Dictionary Attributes

Key Type Semantics

Author string (Optional) The document’s author.

CreationDate string (Optional) The date the document was created. See the
description of the ModDate key for information on the string’s
format.

Creator string (Optional) If the document was converted to PDF from another
form, the name of the application that originally created the
document.

Producer string (Optional) The name of the application that converted the
document from its native form to PDF.

Title string (Optional) The document’s title.

Subject string (Optional) The document’s subject.

Keywords string (Optional) Keywords relevant for this document. These are used
primarily in cross-document searches.

pdfmark Reference Manual 29

Basic pdfmark Features
Document Open Options (DOCVIEW)

2

Info dictionary pdfmarks may occur anywhere in the PostScript language file.

See “Info Dictionary” on page 64 for examples.

Document Open Options (DOCVIEW)

A PDF file can specify the following things regarding what happens when it is opened:

● The way the document is displayed. The options are: the document only, the document
plus thumbnail images, the document plus bookmarks, or just the document in full
screen mode.

● A location other than the first page that is to be displayed.

● An optional action that occurs.

The above information is contained in key–value pairs in the document’s Catalog
dictionary. It can be set using the pdfmark operator in conjunction with the name
DOCVIEW.

The syntax for specifying Catalog dictionary entries is:

[/PageMode name
…Action-specifying key–value pairs…
/DOCVIEW pdfmark

The PageMode key specifies how the document is to be displayed when opened. It can take
the following values:

● UseNone — Open the document, displaying neither bookmarks nor thumbnail images.

● UseOutlines — Open the document and display bookmarks.

ModDate string (Optional) The date and time the document was last modified. It
should be of the form:
(D:YYYYMMDDHHmmSSOHH'mm')
“D:” is an optional prefix. YYYY is the year. All fields after the year
are optional. MM is the month (01-12), DD is the day (01-31), HH is
the hour (00-23), mm are the minutes (00-59), and SS are the
seconds (00-59). The remainder of the string defines the relation
of local time to GMT. O is either + for a positive difference (local
time is later than GMT) or - (minus) for a negative difference. HH' is
the absolute value of the offset from GMT in hours, and mm' is the
absolute value of the offset in minutes. If no GMT information is
specified, the relation between the specified time and GMT is
considered unknown. Regardless of whether or not GMT
information is specified, the remainder of the string should
specify the local time.

TABLE 2.7 Info Dictionary Attributes

Key Type Semantics

Basic pdfmark Features
Page Label and Plate Color (PAGELABEL)

2

30 pdfmark Reference Manual

● UseThumbs — Open the document and display thumbnail images.

● FullScreen — Open the document in full screen mode.

If PageMode is not specified, the value defaults to UseNone.

The DOCVIEW pdfmark can also specify a destination (a page to which the document
should be opened) or an action, by using additional key–value pairs. See Chapter 3,
“Specifying Actions and Destinations,” for details about the key–value pairs that can be
used.

DOCVIEW pdfmarks may occur anywhere in the PostScript language file.

See “File Open Action” on page 65 for an example.

Page Label and Plate Color (PAGELABEL)

The PAGELABEL pdfmark allows specification of the page label for a given page. Page labels
can be strings like “iv” or “3-24”, and do not necessarily correspond to the actual page
numbers, which run consecutively. See Section 8.3.1 of the PDF Reference for details.

Its syntax is:

[/Label string
/PlateColor string
/PAGELABEL pdfmark

Both the Label and PlateColor keys are optional. Label takes a string representing the page
label for the page on which the pdfmark appears.

PlateColor takes an optional string representing a device colorant. It is used in high-end
printing situations where the pages are pre-separated prior to generating PDF. This means
that there are multiple page objects in the PDF file (each representing a different colorant)
corresponding to a single physical page.The color for each separation must be specified in
a separation dictionary; see Section 9.10.3 of the PDF Reference for details.

Consecutive pages that specify PlateColor, with the same value for Label, are placed in the
same separation group. The last instance of a Label or PlateColor on a page overrides any
earlier settings of the same key on the same page.

“Page Label” on page 65 gives examples of the use of this pdfmark.

Marked Content (MP, DP, BMC, BDC, EMC)

PDF 1.2 introduced marked content operators, which identify (mark) a portion of a PDF
document as elements that can be processed by an application or plug-in.

Several pdfmark names can be used to specify marked content:

● MP and DP designate a single marked-content point in the document’s content stream.

pdfmark Reference Manual 31

Basic pdfmark Features
Naming Graphics (BP, EP, SP)

2

● BMC, BDC, and EMC bracket a marked-content sequence of objects in the content
stream. Note that these are complete graphics objects, not just a sequence of bytes.

N O T E : Marked content can also be used in conjunction with PDF’s logical structure
facilities. See Chapter 4, “Logical Structure,” for information about pdfmark features
that implement logical structure.

Marked-Content Points

MP creates a marked-content point in the PDF file. DP creates a marked-content point, with
an associated property list. Their syntax is:

[tag
/MP pdfmark

[tag
property-list
/DP pdfmark

tag is an optional name object indicating the role or significance of the point.property-list is
a dictionary containing key-value pairs that are meaningful to the program creating the
marked content.

Marked-content sequences

BMC and BDC begin a marked-content sequence, and EMC ends a sequence. Their syntax is:

[tag
/BMC pdfmark

[tag
property-list
/BDC pdfmark

[/EMC pdfmark

tag is an optional name for the sequence. property-list is a dictionary containing key-value
pairs that are meaningful to the program creating the marked content.

Naming Graphics (BP, EP, SP)

Acrobat Distiller allows a PostScript language program to specify that a given set of
graphical operations should be encapsulated and treated as a single object. The pdfmark
features BP (Begin Picture) and EP (End Picture) enclose a set of graphic operations. The SP
(Show Picture) pdfmark indicates where to insert an object (which may be inserted in more
than one place).

The syntax for the graphics encapsulation commands is:

[/_objdef {objname} /BBox [xll yll xur yur] /BP pdfmark
... page marking instructions ...

Basic pdfmark Features
Naming Images (NI)

2

32 pdfmark Reference Manual

[/EP pdfmark
[{objname} /SP pdfmark

The _objdef {objname} key–value pair in the BP pdfmark names the picture objname. Any
subsequent pdfmark can refer to this object.

N O T E : Graphics names are in the namespace governed by NamespacePush and
NamespacePop, defined in “Namespaces” on page 15.

The BBox key is an array of four numbers [xll, yll, xur, yur] specifying the lower-left x, lower-left
y, upper-right x, and upper-right y coordinates—in user space—of the rectangle defining
the graphic’s bounding box.

When Distiller sees a BP pdfmark, it forks the distillation from the current context and
distills subsequent graphics into a PDF Form object. When it encounters an EP pdfmark,
Distiller finishes the Form object, and distillation continues in the original context. BP and
EP pdfmark operators can be nested.

The SP pdfmark tells Distiller to insert a use of a named picture in the current context—in
the same manner as if it were a cached PostScript form painted with the execform
PostScript language operator. It includes the picture in the current context (page, form, and
so forth) using the current transformation matrix (CTM) to position the graphic.

In addition to using SP to insert pictures, other pdfmark features that allow specifying
named objects can add pictures built using BP and EP to a page.

See “Using the Graphics Encapsulation pdfmark Names (BP, EP, SP)” on page 68 for an
example.

Even if you define the pdfmark operator so that a PostScript interpreter ignores any text
between a mark and a pdfmark, any PostScript operators between the BP and EP pdfmarks
will still be processed. To avoid printing anything between the BP and EP pdfmarks, use a
conditional construct like the one shown in “Using BP and EP pdfmarks to define button
faces for forms” on page 70.

Naming Images (NI)

The NI pdfmark gives a name to a PostScript image. Subsequently, the name can be used to
refer to the image in the same way that a named object is referenced. For example, an
image can be included in PDF logical structure via StOBJ (see “StOBJ” on page 55), so that it
can be included later in element content. The example in “Using OBJ and PUT pdfmarks to
create an alternate image” on page 67 shows using NI with an alternate image.

The syntax for defining an image name is:

[/_objdef {objname}
/NI pdfmark

NI takes the standard _objdef key to name the image within Distiller. Image names are in
the namespace governed by NamespacePush and NamespacePop, defined in “Namespaces”
on page 15.

pdfmark Reference Manual 33

Basic pdfmark Features
Transparency (SetTransparency)

2

The image named by an NI command is to be found subsequently in the PostScript source
file, but it does not need to immediately follow the NI. An image is assigned the name given
by the most recent NI not yet paired with an image.

Another way of understanding this: Distiller maintains a stack of names pushed by NI and
popped by the occurrence of an image. If an image is encountered when this stack is
empty, it is not an error: the image simply does not receive a name.

Transparency (SetTransparency)

PDF 1.4 extends the Adobe imaging model to include the notion of transparency. See
Chapter 7 in the PDF Reference for complete information on transparency. To produce PDF
files with transparency from PostScript files, use the SetTransparency pdfmark feature. This
feature provides a mechanism for specifying the following graphics state parameters:

The syntax of the SetTransparency feature is:

[key–value pairs /SetTransparency pdfmark

where recognized key-value pairs are found in Table 2.8.

N O T E : The keys used by this pdfmark feature are the same as are found in PDF documents.

The arguments to the SetTransparency feature are checked for correct types and values.
Unrecognized keys are ignored and their values are not checked or written to the PDF
document. If no recognized key-value pairs are presented, then this feature adds no
transparency information to the PDF document.

TABLE 2.8 Graphics State Parameters for Transparency

Key Value Meaning

BM name or array
of names

Current blend mode. Default is Normal.

SMask dictionary or
None

Current soft mask, specifying the mask shape or mask opacity values.
Default is None.

CA number Current stroking alpha constant, specifying the constant shape or
constant opacity value to be used for stroking operations. Default is 1.0.

ca number Same as CA, but for nonstroking operation. Default is 1.0.

AIS boolean The alpha source flag (“alpha is shape”), specifying whether the

current soft mask and alpha constant are to be interpreted as shape
values (true) or opacity values (false). Default is false.

TK boolean The text knockout flag, which determines the behavior of
overlapping glyphs within a text object. Default is true.

Basic pdfmark Features
Transparency (SetTransparency)

2

34 pdfmark Reference Manual

The values set by this feature are subject to gsave/grestore. For example:

[/ca .8 /SetTransparency pdfmark % Nonstroking alpha is now .8
gsave
[/ca .7 /SetTransparency pdfmark % Nonstroking alpha is now .7
grestore

% Nonstroking alpha is now .8

The initgraphics operator resets all of the graphics state parameters for transparency to the
defaults as shown in Table 2.8.

The following PostScript demonstrates a use of the SetTransparency feature using Normal
blend mode with differing opacities:

/DeviceCMYK setcolorspace 15 setlinewidth
[/ca .6 /CA .3 /BM /Normal /SetTransparency pdfmark

0 1 1 0 setcolor 220 330 150 0 360 arc fill % red
0 0 1 0 setcolor 320 503 150 0 360 arc fill % yellow
1 1 0 0 setcolor 420 330 150 0 360 arc fill % blue

1 0 0 0 setcolor 230 440 104 0 360 arc stroke % cyan
0 1 0 0 setcolor 410 440 104 0 360 arc stroke % magenta
0 0 1 0 setcolor 320 284 104 0 360 arc stroke % yellow

Compare this to the following in which the blend mode has been changed:

/DeviceCMYK setcolorspace 15 setlinewidth
[/ca .6 /CA .3 /BM /Difference /SetTransparency pdfmark

0 1 1 0 setcolor 220 330 150 0 360 arc fill % red
0 0 1 0 setcolor 320 503 150 0 360 arc fill % yellow
1 1 0 0 setcolor 420 330 150 0 360 arc fill % blue

1 0 0 0 setcolor 230 440 104 0 360 arc stroke % cyan
0 1 0 0 setcolor 410 440 104 0 360 arc stroke % magenta
0 0 1 0 setcolor 320 284 104 0 360 arc stroke % yellow

Note that filling and stroking the same path results in the use of the PDF f and S operators
and not the B operator. This produces a “double border” effect and is not usually desirable.

/DeviceCMYK setcolorspace 15 setlinewidth
[/ca .6 /CA .3 /BM /Normal /SetTransparency pdfmark

0 1 1 0 setcolor220 330 150 0 360 arc % red path
gsave fill grestore stroke % fill, then stroke

0 0 1 0 setcolor320 503 150 0 360 arc % yellow path
gsave fill grestore stroke % fill, then stroke

1 1 0 0 setcolor420 330 150 0 360 arc % blue path
gsave fill grestore stroke % fill, then stroke

pdfmark Reference Manual 35

Basic pdfmark Features
Transparency (SetTransparency)

2

Transparency Group XObject and Soft Mask

To specify a soft mask dictionary in a graphics state, it is necessary to define and access a
transparency group XObject—a form XObject with a Group entry. See the PDF Reference,
Section 7.5.5, for complete information.

Transparency Group XObject

There are two PostScript idioms that create a Form XObject with Distiller: the execform
operator and the BP pdfmark feature. In Distiller 6.0, each of these recognize the Group key
that is used to indicate a transparency group. Two forms with differing Group content are
considered to be different. The syntax for these two idioms are:

<< /FormType 1
/BBox [xll yll xur yur]
/Group group-dictionary
...

>>

[/_objdef {myForm}
/BBox [xll yll xur yur]
/Group group-dictionary
...
/BP pdfmark

Soft Mask Dictionaries

Because Distiller is configured to use execform (not /Form defineresource), there is no direct
way for Distiller to access a PostScript form dictionary if it is not used by execform. But a
form used by execform will always leave marks on the page. So the way to create a soft
mask dictionary is to create a transparency group form XObject using the BP pdfmark
feature, then refer to this form in the soft mask dictionary in the Graphics state. For
example:

[/_objdef {myForm} % Name to be used by G in Soft Mask below
/BBox [xll yll xur yur]
/Group dict
/BP pdfmark
... define the shapes here
/EP pdfmark

% Set the soft mask in Graphics state
[/SMask << /S /Alpha /G {myForm} >> /SetTransparency pdfmark

Here is another example:

280 0 translate
/DeviceCMYK setcolorspace
% Draw the background...
0 0 0 0.2 setcolor 10 540 100 200 rectfill
1 1 1 0 setcolor 10 540 200 200 rectstroke
% Define the form...
[/_objdef {aForm} /BBox [10 540 210 740]

/Group << /S /Transparency /K true>> /BP pdfmark
/DeviceCMYK setcolorspace

Basic pdfmark Features
Transparency (SetTransparency)

2

36 pdfmark Reference Manual

0.14 0.85 0.77 0.03 setcolor 72 600 50 0 360 arc fill
0.12 0.02 0.78 0 setcolor 110 650 50 0 360 arc fill
0.93 0.69 0.07 0.01 setcolor 147 600 50 0 360 arc fill
[/EP pdfmark
% Draw the form...
gsave
[/ca 0.5 /BM /Normal /SetTransparency pdfmark
[{aForm} /SP pdfmark
grestore
% Use the Form as Soft Mask...
[/SMask << /S /Alpha /G {aForm} >> /SetTransparency pdfmark
...

Soft Mask Images

There are two ways to specify a soft mask in PDF: a soft-mask dictionary in the Graphics
state as described above, and a soft-mask image associated with another image XObject (as
an SMask entry).

A soft-mask image XObject has the same entries as an ordinary image XObject, with some
restrictions:

1. ColorSpace must be DeviceGray.

2. Matte is a array of component values in the color space of the parent image.

3. Width and Height must be the same as in the parent image if Matte is present.

4. ImageMask must be false or absent.

5. Mask and SMask must be absent.

6. BitsPerComponent is required.

Distiller already has a mechanism for naming and identifying image objects using the NI
pdfmark feature. To support softmasks, NI now recognizes three additional entries:
IsSoftMask, Matte, and SMask.

TABLE 2.9 NI pdfmark

Key Value Comments

/_objdef {nameobject} A name object assigned to the next image.

IsSoftMask boolean Default is false.

Matte array Array of component values specifying matte color with which the
parent image data has been pre-blended.

SMask {SoftMaskImageName} {SoftMaskImageName} must be defined already by another NI
pdfmark. If SMask is present, IsSoftMask must be false.

pdfmark Reference Manual 37

Basic pdfmark Features
Add Metadata to the Catalog (Metadata)

2

Using NI pdfmark, one must define the soft-mask image first and then use it as the SMask
entry for the parent image. For example:

[/_objdef {mySoftMask} % Name assigned to the next image.
/SoftMask true % Next image {mySoftMask123} is a soft mask.
/Matte [.1 .2 .3]
/NI pdfmark

... define the soft mask image (ColorSpace must be /DeviceGray)

[/_objdef {myImage} % Name assigned to next image.
/SMask {mySoftMask} % Associate soft mask {mySoftMask123}
/NI pdfmark

... define the image here

In this example, the image’s ColorSpace must have three components and the image data
must be pre-blended with [.1 .2 .3].

Add Metadata to the Catalog (Metadata)

The ability to add metadata to the Catalog has been added for Distiller 6.0. The syntax for
the Metadata feature is:

[{Catalog} {XMPStreamName} /Metadata pdfmark

In future releases of Distiller, metadata may be attached to objects other than the Catalog
object.

If the target is not the Catalog object or if DSC processing is enabled and this feature is
located within Encapsulated PostScript (EPS), then this feature is ignored. Otherwise, the
metadata associated with the stream XMPStreamName is added to the Catalog object with
the key Metadata. See the PDF Reference, Section 9.2.2, for more information.

For example:

[/_objdef {myMetadata} /type stream /OBJ pdfmark
[{myMetadata} currentfile 0 (% -- end --) /SubFileDecode filter /PUT pdfmark
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
...
% -- end --
[{myMetadata} << /Type /Metadata /Subtype /XML>> /PUT pdfmark
[{Catalog} {myMetadata} /Metadata pdfmark

Embedded File Content (EMBED)

With Distiller 6.0, the pdfmark feature EMBED enables the embedding of file content into a
PDF document. The syntax for this feature is:

[/Name (Unicode Name)
/FS << /Type /Filespec /F (name) /EF << /F {streamName} >> >>
EMBED pdfmark

Basic pdfmark Features
Compatibility Notes

2

38 pdfmark Reference Manual

This use of this feature embeds file content into a name tree within the EmbeddedFiles
dictionary of the name dictionary (Names, a collection of name trees). This corresponds to
the following structure as found in PDF documents:

<< /Type /Catalog % The catalog dictionary
/Names % The name dictionary; see PDF 1.4, p. 92
<< /EmbeddedFiles % One particular name tree; see p. 93, 101-102

<< /Names % The name tree node; p. 102
[
(Unicode Name) % Unique Unicode string used for Acrobat access

<< % The file specification dictionary; p. 122
/F (name) % The file name for export
/EF << ... >> % Embedded file stream dictionary; p. 124
>>

]
>>

>>
>>

For example:

[/NamespacePush pdfmark
[/_objdef {fstream} /type /stream /OBJ pdfmark
[{fstream} << /Type /EmbeddedFile >> /PUT pdfmark
[{fstream} (Simulating file content here) /PUT pdfmark
[/Name (Unicode Unique Name) % e.g., <feff 0041 0073> is Unicode for “As”

/FS <<
/Type /Filespec
/F (myfile.txt)
/EF << /F {fstream} >>
>>

/EMBED pdfmark
[{fstream} /CLOSE pdfmark
[/NamespacePop pdfmark

Compatibility Notes

The following pdfmark names are compatible with older versions of Distiller, but are not
recommended to be used with the current version.

Old-style Links (LNK)

Prior to version 2.1 of Distiller, links could only be specified by using the LNK pdfmark. This
form is still supported for backward compatibility, but should no longer be used. Instead,
use ANN, with Link as the value of the Subtype key. The syntax is:

[/Rect array
/Page integer
/View array
/LNK pdfmark

pdfmark Reference Manual 39

Basic pdfmark Features
Compatibility Notes

2

Pass-through PostScript Commands (PS)

N O T E : As of Acrobat version 5.0, this feature is no longer supported in any PDF files of
version 1.4 and later.

Blocks of PostScript language code can be specified by using the pdfmark operator in
conjunction with the name PS. Any PostScript language code specified in this manner is
copied directly into the PDF file without being distilled, and is ignored when the PDF file is
viewed using Acrobat or Adobe® Reader® . It is only used when the PDF file is printed to a
PostScript printer.

N O T E : Pass-through PostScript language code should be used only when PDF does not
provide another way to achieve the same result.

The syntax for specifying a block of pass-through PostScript language code is:

[/DataSource string or file
/Level1 string or file
/PS pdfmark

This pdfmark must be placed in the PostScript language program at the point where the
block of code is to be executed during printing.

TABLE 2.10 Pass-through PostScript Language Command Attributes

Key Type Semantics

DataSource string or
file

(Required) The PostScript language commands to copy into the PDF
file. See the discussion of the file operator in the PostScript
Language Reference Manual, Third Edition for information on
specifying files.

Level1 string or
file

(Optional) PostScript Level 1 language code that is used instead of
the value of the DataSource key when printing to a printer that
supports only PostScript Level 1.

Basic pdfmark Features
Compatibility Notes

2

40 pdfmark Reference Manual

pdfmark Reference Manual 41

3 Specifying Actions and
Destinations

When a user opens a file, clicks on a link, or clicks on a bookmark, there are several types of
information that need to be specified in order to indicate what should happen. Different
pdfmark types require one or more of the following:

● Actions specify what type of action should be taken. They are indicated by the Action key
in a pdfmark. See “Actions” on page 41.”

● Destinations specify a particular location in a file, and a zoom factor. See “Destinations”
on page 44.”

View destinations require a Page key and a View key. Typically they are used along with
an Action key; if there is no Action key, the action is the equivalent of GoTo, meaning to
jump to the destination in the current file.

Alternatively, named destinations can be used, specified by the Dest key. They specify a
destination in the same file or another file, by name.

● File specifiers are indicate the target of an action when it is not the current file. See
Table 3.2, “File specifier keys.”

Actions

PDF defines several types of actions that can be specified for bookmarks and annotations.
The types defined as of PDF 1.3 are:

TABLE 3.1 Action types

Action type Description

GoTo Go to a destination in the current document

GoToR Go to a destination in another document

Launch Launch an application, usually to open a file

Thread Begin reading an article thread

URI Resolve a uniform resource identifier

Sound Play a sound

Movie Play a movie

Hide Set an annotation’s Hidden flag

Specifying Actions and Destinations
Actions

3

42 pdfmark Reference Manual

When using pdfmark, the type of action for the annotation or bookmark is specified by the
Action key. It takes one of the following values:

● A predefined name corresponding to one of the first four items in Table 3.1: GoTo, GoToR,
Launch, or Article (which corresponds to the Thread type in PDF).

● A dictionary specifying one of the other types, or a custom action. This dictionary must
contain the key–value pairs that are to be placed into the action dictionary in the PDF
file. See Section 8.5 in the PDF Reference for a detailed description of all the actions and
their dictionaries. The syntax for this type of Action key is:

/Action << / Subtype actiontype
...other action dictionary key–value pairs... >>

“Custom link action (URI link for the Acrobat WebLink plug-in)” on page 61 shows a note
pdfmark containing a URI action.

If the Action key is not present, the action is assumed to be the equivalent of GoTo; that is,
jumping to a location in the current document. Actions other than GoTo may require a file-
specifier key to specify an external document (see Table 3.2, “File specifier keys”).

GoTo Actions

GoTo actions jump to a specified page and zoom factor within the current document. They
require the Dest key, or both the Page and View keys. See “Destinations” on page 44 for
more information on these keys.

GotoR Actions

GoToR actions specify a location in another PDF file. They require the Dest key, or both the
Page and View keys, plus one or more file-specifier keys (see Table 3.2).

See “Bookmarks” on page 62 for an example of a GoToR action.

The following table specifies keys that can be used with the GoToR, Launch, and Article
actions to specify the target file.

Named Execute an action predefined by the viewer application

SubmitForm Send data to a URL

ResetForm Set fields to their default values

ImportData Import field values from a files

JavaScript Execute a JavaScript script.

TABLE 3.1 Action types

Action type Description

pdfmark Reference Manual 43

Specifying Actions and Destinations
Actions

3

TABLE 3.2 File specifier keys

Section 3.10 of the PDF Reference provides more information about the above specifiers.

Launch Actions

Launch actions launch an arbitrary application or document, specified by the File key. If an
application is specified, some platforms allow passing options or filenames to the
application that is launched. See “Link that launches another file” on page 61 for an
example of a launch action.

See Table 3.2 for the file specifier keys that can be used by Launch actions. In addition, the
following optional keys can be used:

Key Type Semantics

File string (Required) The device-independent pathname of the PDF file.

DOSFile string (Optional) The MS-DOS pathname (in the PDF pathname format), of
the PDF file. Acrobat viewer applications on Windows and DOS
computers ignore the File key if the DOSFile key is present.

MacFile string (Optional) The Mac OS filename (in the PDF pathname format) of the
PDF file. Acrobat viewer applications on Mac OS computers ignore the
File key if the MacFile key is present.

UnixFile string (Optional) The UNIX filename (in the PDF pathname format) of the PDF
file. Acrobat viewer applications on UNIX computers ignore the File key
if the UnixFile key is present.

URI string (Optional) The uniform resource identifier (URI) of a file on the internet.
It can be an HTML file as well as a PDF file. Acrobat viewer applications
ignore the File key if the URI key is present.
Named destinations may be appended to URLs, following a “#”
character, as in http://www.adobe.com/test.pdf#name. The Acrobat
viewer displays the part of the PDF file specified by the named
destination.

N O T E : This key is used with the Launch action. URIs can also be
specified with an action dictionary where the value of the
Subtype key is /URI (see examples on page 61.)

ID array (Optional) An array of two strings specifying the PDF file ID. This key
can be used to ensure the correct version of the destination file is
found. If present, the destination PDF file’s ID is compared with ID, and
the user is warned if they are different.

Specifying Actions and Destinations
Destinations

3

44 pdfmark Reference Manual

TABLE 3.3 Optional keys for Launch actions

N O T E : Acrobat viewer applications running under Windows use the Windows function
ShellExecute() to launch an application specified using the Launch action. The keys
WinFile, Dir, Op, and Params correspond to the parameters of ShellExecute.

Article Actions

Article actions set the Acrobat viewer to article-reading mode, at the beginning of a
specified article in the current document or another PDF document.

They require the Dest key, which takes one of the following values:

● An integer that specifies the article’s index in the document (the first article in a
document has an index of 0)

● A string that matches the article’s Title.

In addition, article actions require one or more file-specifier keys if the article is in a
different PDF file (see Table 3.2).

See “Article action” on page 63 for an example of an article action.

Destinations

There are two ways of specifying a location within a document that is the target of an
action:

● View destinations explicitly specify a page, a location on the page, and a fit type. See “View
Destinations” on page 45.

● Named destinations specify the target as a name which has been defined. See “Defining
Named Destinations” on page 46.

Key Type Semantics

Dir string (Optional) The default directory of a Windows application.

Op string (Optional) The operation to perform; used only under Windows. The
string must be open (the default) or print. If WinFile specifies an
application, not a document, this key is ignored and the application is
launched.

WinFile string (Optional) The MS-DOS filename of the document or application to
launch.

Params string (Optional) The parameters passed to a Windows application started
with the Launch action. If the WinFile key specifies an application,
Params must not be present.

pdfmark Reference Manual 45

Specifying Actions and Destinations
Destinations

3

View Destinations

View destinations require the following two keys:

TABLE 3.4 Keys for view destinations

All distances and coordinates specified in Table 3.5 are in default user space.

Key Type Semantics

Page integer or
name

The destination page.
An integer value represents the sequence number of the page within
the PDF file.

N O T E : The first page in a file is page 1, not page 0.

The name objects Next and Prev are valid destination page values for
links and articles.
If the destination of a link is on the same page, the Page key should be
omitted. If the value of the Page key is 0, the bookmark or link has a
NULL destination.

View array Specifies a link or bookmark’s destination on a page, and its fit type.
The first array entry is one of the fit type names shown in Table 3.5. The
remaining entries, if any, specify the location as either a rectangle, a
point, or an x– or y–coordinate, depending on the fit type.

TABLE 3.5 Fit type names and parameters

Name Parameters and semantics

Fit No parameters.
Fit the page to the window. This is a shortcut for specifying FitR with the
rectangle being the crop box for the page.

FitB No parameters.
Fit the bounding box of the page contents to the window.

FitH top
Fit the width of the page to the window. top specifies the distance from the
page origin to the top of the window. This is a shortcut for specifying FitR with
the rectangle having the width of the page, and both y-coordinates equal to
top.

FitBH top
Fit the width of the bounding box of the page contents to the window. top
specifies the distance from the page origin to the top of the window.

FitR x1 y1 x2 y2
Fit the rectangle specified by the parameters to the window.

Specifying Actions and Destinations
Destinations

3

46 pdfmark Reference Manual

The zoom factors for the horizontal and vertical directions are identical; there are not
separate zoom factors for the two directions. As a result, more of the page may be shown
than specified by the destination. For example, when using FitR, portions of the page
outside the destination rectangle appear in the window, unless the window happens to
have the same aspect ratio (height-to-width ratio) as the destination rectangle.

A common destination is “upper left corner of the specified page, with a zoom factor of 1.”
This can be obtained using the XYZ destination form, with a left of -4 and a top equal to the
top of the CropBox (or the page size if no CropBox was specified) plus 4. The offset of 4 is
used to slightly move the page corner from the corner of the window, to provide a visual
cue that the corner of the page is being shown.

The following examples illustrate destinations: “Links” on page 60, “Bookmarks” on
page 62, “File Open Action” on page 65 and “Named Destinations” on page 65.

Defining Named Destinations

Locations in PDF files can be specified by name instead of by page number and view. These
names can then be used as destinations of bookmarks or links. Using named destinations is
particularly advantageous for cross-document links, because if the document containing a
link’s destination is revised, the link will still work, regardless of whether its location in the
file has changed.

FitV left
Fit the height of the page to the window. left specifies the distance in from the
page origin to the left edge of the window. This is a shortcut for specifying FitR
with the rectangle having the height of the page, and both x-coordinates equal
to left.

FitBV left
Fit the height of the bounding box of the page contents to the window. left
specifies the distance from the page origin to the left edge of the window.

XYZ left top zoom
left and top specify the distance from the origin of the page to the top-left
corner of the window. zoom specifies the zoom factor, with 1 being 100%
magnification. If left, top or zoom is NULL, the current value of that parameter is
retained. For example, specifying a view destination of

/View [/XYZ NULL NULL NULL]

goes to the specified page and retain the same horizontal and vertical offset
and zoom as the current page. A zoom of 0 has the same meaning as a zoom of
NULL.

TABLE 3.5 Fit type names and parameters(Continued)

Name Parameters and semantics

pdfmark Reference Manual 47

Specifying Actions and Destinations
Destinations

3

A named destination is specified by using the pdfmark operator in conjunction with the
name DEST. The syntax for a named destination pdfmark is:

[/Dest name
/Page pagenum
/View destination
/DEST pdfmark

In addition to the keys listed in Table 3.6 named destinations may also specify arbitrary
key–value pairs.

Named destinations may be appended to URLs, following a “#” character, as in
http://www.adobe.com/test.pdf#nameddest=name. The Acrobat viewer displays the part of
the PDF file specified in the named destination.

See “Named Destinations” on page 65 for examples of named destinations.

Referencing Named Destinations

Named destinations that have been defined with the DEST pdfmark can be used as the
target of a bookmark or link, or by the optional open action in a document’s Catalog
dictionary. They are specified using the Dest key.

See “Named Destinations” on page 65 for examples of named destinations.

Note: When used with the Article action, Dest has a different syntax. See “Article Actions” on
page 44.

TABLE 3.6 Named destination attributes

Key Type Semantics

Dest name (Required) The destination’s name.

Page integer (Optional) The sequence number of the destination page. If present,
the named destination pdfmark may be placed anywhere in the
PostScript language file. If omitted, the pdfmark must occur within
the PostScript language description for the destination page.

View array (Optional) The view to display on the destination page. If omitted,
defaults to a null destination (lower left corner of the page at a
zoom of 100%). See “Destinations” on page 44 for information on
specifying a view destination.

Specifying Actions and Destinations
Destinations

3

48 pdfmark Reference Manual

pdfmark Reference Manual 49

4 Logical Structure

PDF files (in Versions 1.3 and beyond) can contain structure trees giving a logical structure to
the information in a document. The facilities for logical structure in PDF are described in
Section 9.6 of the PDF Reference (Version 1.4, 3rd Edition).

There is a structure suite of names used in conjunction with the pdfmark operator that can
be used to specify logical structure within PDF files.

“Structure Examples” on page 76 gives a variety of examples of using the structure suite.

EXAMPLE 4.1

Elements and Parents

A document’s logical structure consists of a hierarchy of structure elements. Elements can
contain contents and attributes. At the root of the hierarchy is a dictionary object called the
Structure Tree Root.

When using the structure suite, the hierarchy is established by means of the implicit parent
stack of elements. Elements can be pushed onto or popped off of this stack. When an
element is created, its parent is the current top item on the stack. (If the stack is empty, the
document’s Structure Tree Root is made the parent; the Structure Tree Root is created if it
does not already exist.) When element content is created, its containing element is the
current top item on the stack.

N O T E : Some operators that specify an element cannot accept the Structure Tree Root as
the implicit argument; therefore these commands are in error if the implicit parent
stack is empty when they are encountered or if the top item on the stack is the
Structure Tree Root. These cases are noted in the command descriptions.

Structure Operators

This section lists the pdfmark names that make up the structure suite. Most of these are
directly related to PDF logical structure features, but some only manipulate the state of the
PDF creation process, without corresponding to any particular output.

● Structure Tree Root
– StRoleMap adds entries to the role map.
– StClassMap adds entries to the class map.

● Elements
– StPNE creates a new structure element.

Logical Structure
Structure Tree Root

4

50 pdfmark Reference Manual

– StBookmarkRoot creates a root bookmark for a structure bookmark tree.
– StPush pushes an existing element onto the implicit parent stack.
– StPop pops an element off the implicit parent stack.
– StPopAll completely empties the implicit parent stack.

● Element Content
– StBMC indicates the beginning of marked content.
– StBDC indicates the beginning of marked content with a dictionary.
– EMC delimits the end of marked content.
– StOBJ adds an existing PDF object as part of an element’s content.

● Attributes
– StAttr enables the attachment of attribute objects to elements.

● Saving and restoring the stack
– StStore saves the current state of the implicit parent stack.
– StRetrieve restores the implicit parent stack from a saved state.

The following sections fill in the details of the structure suite.

Structure Tree Root

Acrobat Distiller automatically creates a new Structure Tree Root the first time it creates a
new element with StPNE (see “StPNE” on page 51).

The Structure Tree Root contains a role map and a class map (see Section 9.6 of the PDF
Reference for details). The following two pdfmark features can be used to add information
to these maps.

EXAMPLE 4.2

StRoleMap

StRoleMap specifies key-value pairs to be added as dictionary entries to the Structure Tree
Root’s role map. If the Structure Tree Root doesn’t already exist, it is created; if the Structure
Tree Root doesn’t have a role map dictionary, one is created. A given key–value pair always
modifies the role map, even if the key is already in the dictionary.

The syntax for adding entries to a role map is:

[/new-element-subtype-name
/standard-structural-subtype-name

...
/new-element-subtype-name

/standard-structural-subtype-name
/StRoleMap pdfmark

pdfmark Reference Manual 51

Logical Structure
Elements

4

StClassMap

StClassMap behaves like StRoleMap, except that it adds entries to the Structure Tree Root’s
class map, rather than the role map. The syntax for adding entries to a class map is:

[/class-name /attribute-object-name
...
/class-name /attribute-object-name
/StClassMap pdfmark

Elements

The structure suite provides several commands to create elements and link them into
structure trees.

StPNE

StPNE (“Push New Element”) creates a new element whose parent is the element on the top
of the implicit parent stack. Its syntax is:

[/Subtype name
/_objdef {objname}
/Title string
/Alt string
/ID string
/Class name
/At integer
/Bookmark dictionary
/StPNE pdfmark

EXAMPLE 4.3

These keys are described in Table 4.1.

TABLE 4.1 Common element keys

Key Type Semantics

Subtype name (Required) The element type, such as Link or Section.

Title string (Optional) A human-readable name for the particular element.

Alt string (Optional) An alternate representation of the element’s
contents as human-readable text.

ID string (Optional) A unique identifier for the element. The identifier
must be unique within the document in which the element
occurs. It is an error to specify an element with the same ID as
an existing element in the same tree.

Logical Structure
Elements

4

52 pdfmark Reference Manual

EXAMPLE 4.1

A new element is added to its parent at the index specified with the At key. The newly-
created element is pushed onto the implicit parent stack.

N O T E : If the implicit parent stack is empty, the Structure Tree Root is pushed onto the stack
and used as the new element’s parent. If there is no Structure Tree Root, one is
created, pushed onto the stack, and used as the new element’s parent.

StPNE may also take the key _objdef to specify an object name for the element. Once an
element is named, it can be referenced with the E key of the StPush pdfmark (see “StPush”
on page 53).

The Bookmark key allows a bookmark to be automatically generated for an element and
added to the Structured Bookmark subtree. Its value is a bookmark dictionary, which may
contain the Title and Open keys described in Table 4.2.

Class name (Optional) The class name to be associated with the element.

At integer (Optional) Index at which to insert this item within its parent. If
omitted, or greater than or equal to the parent’s current
number of children, the item is added as the last child of its
parent, retaining all existing items in their original positions. If
less than or equal to zero, the new item becomes the first child
of its parent. If the index is any other number, the item is
inserted at that index within the container, and all items that
had indices greater than or equal to the given index are shifted
to the position with index one greater. An item may be an
element, marked content, or a PDF object.

Bookmark dictionary (Optional) Specifies a bookmark that is generated for this
structural element. Table 4.2 describes this dictionary.

TABLE 4.2 Bookmark dictionary / bookmark tree root

Key Type Semantics

Title string (Optional) Bookmark title. The encoding and character set used
is either PDFDocEncoding (as described in Appendix D in the
PDF Reference) or Unicode. If Unicode, the string must begin
with <FEFF>. For example, the Unicode string for (ABC) is
<FEFF004100420043>. Title has a maximum length of 255
PDFDocEncoding characters or 126 Unicode values, although a
practical limit of 32 characters is advised so that it can be read
easily in the Acrobat viewer.

TABLE 4.1 Common element keys

Key Type Semantics

pdfmark Reference Manual 53

Logical Structure
Elements

4

If the Title key is absent, the title is the title of the element or its subtype.

The bookmark dictionary may also contain key-value pairs that specify an action to be
taken when the bookmark is activated (see Chapter 3, “Specifying Actions and
Destinations). If none of the action keys are present, the bookmark’s action is to go to either
the first page where a marked content is a child of this element or a child in one of its
descendant elements.

“A bookmark for a structural element” on page 78 defines a bookmark for an element.

StBookmarkRoot

StBookmarkRoot creates the root bookmark for structure bookmarks added by a StPNE
with a Bookmark key. Its syntax is:

[/Title string
/Open boolean
... action-specifying-keys ...
/StBookmarkRoot pdfmark

It contains the Title and Open keys shown in Table 4.2. If the Title key is absent, the title is
“Untitled”.

It may also contain the action keys in Chapter 3, “Specifying Actions and Destinations.” if
none of these keys are present, the bookmark root has no action associated with it.

An operator with StBookmarkRoot must appear before any StPNE with a Bookmark key;
otherwise the default (“Untitled”, closed, no action) is used for the structured bookmark
subtree.

StPush

StPush pushes an existing element onto the implicit parent stack. The syntax for pushing an
element is:

[/E {objname}
/StPush pdfmark

The E key specifies an existing element, given as an object name of the special form
{objname} used to refer to Cos objects. It must be a name that was created by a previous
StPNE using the _objdef key (see “StPNE” on page 51).

N O T E : If the E key is omitted, the Structure Tree Root of the document is specified. The
Structure Tree Root is created if it does not already exist.

Open boolean (Optional) If true, the bookmark is open, that is, its children are
visible. If false, the bookmark is closed. If this key is absent, the
bookmark is closed.

TABLE 4.2 Bookmark dictionary / bookmark tree root

Key Type Semantics

Logical Structure
Specifying Element Content

4

54 pdfmark Reference Manual

StPop

StPop removes the element at the top of the implicit parent stack. It is an error for StPop to
be encountered when the implicit parent stack is empty.

The syntax for popping an element is:

[/StPop pdfmark

StPopAll

StPopAll completely empties the implicit parent stack. The syntax for emptying the stack is:

[/StPopAll pdfmark

StUpdate

StUpdate updates the entries of the current structure element. The syntax is:

[<< /S /Span... >> /StUpdate pdfmark

Specifying Element Content

Elements may have two kinds of document content: marked content and references to PDF
objects.

Use StBDC and StBMC to indicate the beginning of marked content and EMC to delimit the
end of marked content. These operators combine the creation of the marked content
region in the PDF content stream with the creation of marked content and its placement
within the structure hierarchy.

N O T E : Marked content can be specified independently of the structure suite, using the
operators described in “Marked Content (MP, DP, BMC, BDC, EMC)” on page 30.”

It is possible to nest marked content by nesting the StBMC/BDC and EMC operators. This is
different than the nesting maintained by the tree structure of elements, which is
implemented using StPNE and StPop. Note that nested marked content may belong to
elements in different branches of a Structure Tree.

To specify references to PDF objects, use the StOBJ operator.

StBMC

StBMC marks the beginning of a sequence of marked content objects. Its syntax is:

[/T tag
/At integer
/StBMC pdfmark

pdfmark Reference Manual 55

Logical Structure
Specifying Element Content

4

The marked content is added to its containing element (the top element of the implicit
parent stack) at the position optionally specified by the At key (see Table 4.1). The T key is
described in Table 4.3. It is an error if the implicit parent stack is empty when StBMC is
encountered.

StBDC

StBDC marks the beginning of a sequence of page content objects with an associated
property list, given by a dictionary. StBDC behaves just like StBMC, with the addition of a
property list. Its syntax is:

[/T tag
/P properties-dictionary
/At integer
/StBDC pdfmark

The marked content is added to its containing element (the element on top of the implicit
parent stack) at the position optionally specified by the At key (see Table 4.1). The P
(Properties) and T (Tag) keys are described in Table 4.3. It is an error if the implicit parent
stack is empty when StBDC is encountered.

EMC

EMC signals the end of a marked sequence of page content operators. Its syntax is:

[/EMC pdfmark

StOBJ

StOBJ adds an existing PDF object to the content of the top element of the implicit parent
stack, using the Cos object reference mechanism. Its syntax is:

[/Obj {objname}
/At integer
/StOBJ pdfmark

TABLE 4.3 Specifying tags and property list entries for Marked Content

Key Type Semantics

T (Tag) name (Optional) The tag to be given to the marked content being
created. If this key is omitted, the subtype of the containing
element is used.

P (Properties) dictionary (Optional) Key–value pairs that are entered into the properties
dictionary of the marked content being created. If this key is
omitted, no properties other than those required by the
implementation of logical structure in PDF are entered into the
properties dictionary. This key is supported only with StBDC.

Logical Structure
Attribute Objects

4

56 pdfmark Reference Manual

The Obj key specifies the object to be added as data to the specified element, given as an
object name of the special form {objname} used to refer to Cos objects. This object must
have been created previously and must be a dictionary or stream.

The At key (see Table 4.1) specifies the position of the new content within the containing
element.

It is an error if the implicit parent stack is empty when StOBJ is encountered.

Attribute Objects

Elements can have additional information, or attributes, associated with them. Attributes
are held in attribute objects, which can be associated with either a single element by using
StAttr (see “StAttr” on page 56), or with a group of objects by storing it in the ClassMap of
the Structure Tree Root, using StClassMap (see “StClassMap” on page 51).

StAttr

StAttr creates a new attribute object and adds it to the element on top of the implicit
parent stack.

The syntax to create a new attribute object is:

[/Obj {objname}
/StAttr pdfmark

The Obj key specifies the object to be added as an attribute object to the specified element,
given as an object name of the special form {objname} used to refer to Cos objects. This
object must have been created previously and must be a dictionary or stream.

N O T E : In the PDF file, the attribute object is stored in the A key in the element’s dictionary.

It is an error if the implicit parent stack is empty when StAttr is encountered.

Storing and Retrieving the Implicit Parent Stack

Structure suite operators specify parents implicitly by means of the stack. However, it is not
always possible to mimic a tree’s structure by nesting the structure within the document.
For example, a paragraph may be represented by regions on more than one page, or it may
be interrupted by other page content.

To allow applications flexibility in their page output while allowing them the convenience
of specifying tree structure, the structure suite provides a way of storing and later
retrieving the tree’s context.

See “Interrupted structure” on page 78 for an illustration of storing and retrieving the
implicit parent stack.

pdfmark Reference Manual 57

Logical Structure
EPS Considerations

4

N O T E : The names under which implicit parent stacks are stored and retrieved are in the
current namespace governed by the stack operators NamespacePush and
NamespacePop, defined in “Namespaces” on page 15.”

StStore

StStore saves the current state of the implicit parent stack (without changing it). Its syntax
is:

[/StoreName name
/StStore pdfmark

The StoreName key specifies a name object to be associated with the saved implicit parent
stack state. Storing an implicit parent stack state under a previously used name completely
replaces the implicit parent stack state already stored under that name.

StRetrieve

StRetrieve restores the implicit parent stack from a saved state, whose name is specified by
the StoreName key (as described in “StStore” on page 57). The syntax for a restoring the
current state is:

[/StoreName name
/StRetrieve pdfmark

The previous state of the implicit parent stack is overwritten by the restored state. It is an
error to try to retrieve a nonexistent state, that is, to use a name that was not associated
with a stack state by a previous StStore.

EPS Considerations

Encapsulated PostScript (EPS) is a special form of PostScript used to embed graphics
created in one application in a document created in another application. Applications can
create EPS files containing structure elements without knowing anything about the
environment into which the EPS file is to be embedded, which complicates the processing
of a structure inside embedded EPS. The logical structure design here allows structure
within an embedded EPS to be connected to the structure of the surrounding file by way of
the implicit parent stack, while insulating the namespace of the containing file from
accidents due to naming coincidences in embedded EPS files.

It is strongly recommended that applications embedding EPS files wrap the embedded
PostScript between NamespacePush and NamespacePop to insulate the overall PostScript
document from the consequences of multiply-defined object names.

Logical Structure
Tagged PDF

4

58 pdfmark Reference Manual

Tagged PDF

PDF 1.4 introduces the concept of tagged PDF. Tagged PDF is a type of structured PDF that
allows page content to be extracted and reused for various purposes, such as reflow of text
and graphics, conversion to various file formats such as HTML and XML, and accessibility to
the visually impaired.

For detailed information on tagged PDF, see section 9.7 of the PDF Reference.

In PDF 1.4, the Catalog dictionary contains a MarkInfo entry whose value is a dictionary.
That dictionary has a single key called Marked whose value is a boolean; a value of true
indicates that the document is a tagged PDF.

The syntax for indicating tagged PDF using pdfmark is:

[{Catalog} <</MarkInfo <</Marked true >> >> /PUT pdfmark

See “Tagged PDF” on page 82 for an example of using tagged PDF.

EXAMPLE 4.1

pdfmark Reference Manual 59

5 Examples

This section gives examples illustrating many uses of the pdfmark operator.

Ignore pdfmark if not defined in the PostScript interpreter

%%BeginProlog
/pdfmark where

{ pop globaldict /?pdfmark /exec load put } % pdfmark is built-in: exec code.
{
globaldict

begin
/?pdfmark /pop load def % pdfmark is absent: ignore code.
/pdfmark /cleartomark load def
end

}
ifelse
%%EndProlog

Notes

Simple note

[/Rect [75 586 456 663]
/Contents (This is an example of a note. You can type text directly into a

note or copy text from the clipboard.)
/ANN pdfmark

Fancy note

[/Rect [75 425 350 563]
/Open true
/Title (John Doe)
/Contents (This is an example of a note. \nHere is some text

after a forced line break.

This is another way to do line breaks.)
/Color [1 0 0]
/Border [0 0 1]
/ANN pdfmark

Examples
Links

5

60 pdfmark Reference Manual

Private Data in Note

[/Contents (My unimaginative contents)
/Rect [400 550 500 650]
/Open false
/Title (My Boring Title)

% The following is private data. Keys within the private
% dictionary do not need to use the organization’s prefix
% because the dictionary encapsulates them.

/ADBETest_MyInfo
<<
/Routing [(Me) (You)]
/Test_Privileges << /Me /All /You /ReadOnly >>
>>

/ADBETest_PrivFlags 42
/ANN pdfmark

Links

Simple Link (old style, compatible with all Distiller application versions)

[/Rect [70 650 210 675]
/Page 3
/View [/XYZ -5 797 1.5]
/LNK pdfmark

Link

[/Rect [70 650 210 675]
/Border [16 16 1]
/Color [1 0 0]
/Page 1
/View [/FitH 5]
/Subtype /Link
/ANN pdfmark

Fancy link

[/Rect [70 550 210 575]
/Border [0 0 2 [3]]
/Color [0 1 0]
/Page /Next
/View [/XYZ -5 797 1.5]
/Subtype /Link
/ANN pdfmark

pdfmark Reference Manual 61

Examples
Links

5

Link that launches another file

[/Rect [70 600 210 625]
/Border [16 16 1]
/Color [0 0 1]
/Action /Launch
/File (test.doc)
/Subtype /Link
/ANN pdfmark

Custom link action (URI link for the Acrobat WebLink plug-in)

[/Rect [50 425 295 445]
/Action << /Subtype /URI /URI (http://www.adobe.com) >>
/Border [0 0 2]
/Color [.7 0 0]
/Subtype /Link
/ANN pdfmark

% Equivalent link using Launch action
[/Rect [50 425 295 445]

/Action /Launch
/Border [0 0 2]
/Color [.7 0 0]
/URI (http://www.adobe.com)
/Subtype /Link
/ANN pdfmark

% URI link with a named destination
[/Rect [50 425 295 445]

/Action << /Subtype /URI /URI (http://www.adobe.com#YourDestination) >>
/Border [0 0 2]
/Color [.7 0 0]
/Subtype /Link
/ANN pdfmark

Custom link action (named action)

% Link with a named action—executes a menu item
[/Rect [50 425 295 445]

/Action << /Subtype /Named /N /GeneralInfo >>
/Border [0 0 2]
/Color [.7 0 0]
/Subtype /Link
/ANN pdfmark

Examples
Bookmarks

5

62 pdfmark Reference Manual

Custom annotation type

This appears with an unknown annotation icon in the Acrobat viewers, because they do not
know how to interpret this annotation type.

[/Rect [400 435 500 535]
/Subtype /ADBETest_DummyType
/ADBETest_F8Array [0 1 1 2 3 5 8 13]
/ANN pdfmark

Movie annotation

[/Subtype /Movie
/Rect [216 503 361 612]
/T (Title)
/F 1

% The specified file may be a movie or sound file
% Add your movie in place of "(/Disk/moviefile)"

/Movie << /F (/Disk/moviefile) /Aspect [160 120] >>
/A << /ShowControls true >>
/Border [0 0 3]
/C [0 0 1]
/ANN pdfmark

Bookmarks

[/Count 2 /Page 1 /View [/XYZ 44 730 1.0] /Title (Open Actions) /OUT pdfmark
[/Action /Launch /File (test.doc) /Title (Open test.doc) /OUT pdfmark
[/Action /GoToR /File (test.pdf) /Page 2 /View [/FitR 30 648 209 761]

/Title (Open test.pdf on page 2) /OUT pdfmark

[/Count 2 /Page 2 /View [/XYZ 44 730 1.0] /Title (Fixed Zoom) /OUT pdfmark
[/Page 2 /View [/XYZ 44 730 2.0] /Title (200% Magnification) /OUT pdfmark
[/Count 1 /Page 2 /View [/XYZ 44 730 4.0] /Title (400% Magnification)

/OUT pdfmark
[/Page 2 /View [/XYZ 44 730 5.23] /Title (523% Magnification) /OUT pdfmark

[/Count 3 /Page 1 /View [/XYZ 44 730 1.0] /Title (Table of Contents #1)
/OUT pdfmark

[/Page 1 /View [/XYZ 44 730 1.0] /Title (Page 1 - 100%) /OUT pdfmark
[/Page 2 /View [/XYZ 44 730 2.25] /Title (Page 2 - 225%) /OUT pdfmark
[/Page 3 /View [/Fit] /Title (Page 3 - Fit Page) /OUT pdfmark

[/Count -3 /Page 1 /View [/XYZ 44 730 1.0] /Title (Table of Contents #2)
/OUT pdfmark

[/Page 1 /View [/XYZ null null 0] /Title (Page 1 - Inherit) /OUT pdfmark
[/Page 2 /View [/XYZ null null 0] /Title (Page 2 - Inherit) /OUT pdfmark
[/Page 3 /View [/XYZ null null 0] /Title (Page 3 - Inherit) /OUT pdfmark

[/Count 1 /Page 0 /Title (Articles) /OUT pdfmark
[/Action /Article /Dest (Now is the Time) /Title (Now is the Time) /OUT pdfmark

pdfmark Reference Manual 63

Examples
Articles

5

% Bookmark with color and style (new in Acrobat 5.0)
[/Count 0

/Title (Adobe’s Home Page)
/Action /Launch
/URI (http://www.adobe.com)
/C [1 0 0]
/F 3
/OUT pdfmark

% Bookmark with a URI as an action
[/Count 0 /Title (Adobe’s Home page)

/Action << /Subtype /URI /URI (http://www.adobe.com)>> /OUT pdfmark

Articles

Article action

[/Action /Article /Dest (Now is the Time)
/Title (Now is the Time)
/OUT pdfmark

Create text for the article “Now is the Time”

/Helvetica 12 selectfont
(Now is the Time \(Article\)) 230 690 moveto show
(Now is the time for all good men to come to the aid of their
country.) 230 670 moveto show
(Now is the time for all good people to come to the aid of their
country.) 230 655 moveto show
% ... additional text ...
(Click here to go to Adobe's Home Page on the Web) 55 430 moveto show

Article containing two beads

[/Title (Now is the Time)
/Author (John Doe)
/Subject (Coming to the aid of your country)
/Keywords (Time, Country, Aid)
/Rect [225 500 535 705]
/Page 2
/ARTICLE pdfmark

[/Title (Now is the Time)
/Rect [225 500 535 705]
/Page 3
/ARTICLE pdfmark

Examples
Page Cropping

5

64 pdfmark Reference Manual

Page Cropping

Crop this page

% ...
[/CropBox [0 0 288 288] /PAGE pdfmark
/Helvetica findfont 12 scalefont setfont
/DrawBorder

{
10 278 moveto 278 278 lineto 278 10 lineto
10 10 lineto closepath stroke
} bind def

%%EndSetup
%%Page: 1 1
DrawBorder
75 250 moveto (This is Page 3) show
75 230 moveto (Click here to go to page 1.) show
75 200 moveto (Click here to open test.doc.) show

Crop all pages

% ...
[/CropBox [54 403 558 720] /PAGES pdfmark
/DrawBorder

{
58 407 moveto 554 407 lineto 554 716 lineto
58 716 lineto closepath stroke
} bind def

/Helvetica findfont 10 scalefont setfont
%%EndSetup
%%Page: 1 1
DrawBorder
75 690 moveto (This is Page 1) show
75 670 moveto (Below is a closed, default note created using pdfmark:) show
75 570 moveto (Below is an open note with a custom color and label:) show
400 670 moveto (Below is a closed note) show
400 655 moveto (containing private data:) show
400 570 moveto (Below is a custom annotation.) show
400 555 moveto (It should appear as an unknown) show
400 540 moveto (annotation icon:) show

Info Dictionary

[/Title (My Test Document)
/Author (John Doe)
/Subject (pdfmark 3.0)
/Keywords (pdfmark, example, test)
/Creator (Hand Programmed)
/ModificationDate (D:19940912205731)

pdfmark Reference Manual 65

Examples
File Open Action

5

/ADBETest_MyKey (My private information)
/DOCINFO pdfmark

File Open Action

[/PageMode /UseOutlines
/Page 2 /View [/XYZ null null null]
/DOCVIEW pdfmark

Page Label

%%Page: Sec1:2 1
%%PlateColor: Cyan
[/Label (Sec1:1) /PlateColor (Cyan) /PAGELABEL pdfmark

%%Page: iii 3
[/Label (iii) /PAGELABEL pdfmark

Named Destinations

Definition of named destination

[/Dest /MyNamedDest
/Page 1
/View [/FitH 5]
/DEST pdfmark

Link to a named destination

[/Rect [70 650 210 675]
/Border [16 16 1 [3 10]]
/Color [0 .7 1]
/Dest /MyNamedDest
/Subtype /Link
/ANN pdfmark

Examples
Named Objects

5

66 pdfmark Reference Manual

Named Objects

Creating user-defined named objects

[/_objdef {myarrayname} /type/ array /OBJ pdfmark
[/_objdef {mydictname} /type /dict /OBJ pdfmark
[/_objdef {mystreamname} /type /stream /OBJ pdfmark

Adding values to named objects

% insert 132 at location 0
[{myarrayname} 0 132 /PUT pdfmark
[{myarrayname} 100 /APPEND pdfmark
[{myarrayname} /name2 /APPEND pdfmark
[{myarrayname} 2 [200 300] /PUTINTERVAL pdfmark
% At the end of the above examples, the array {myarrayname}
% has the value [132 100 200 300 /name2]
% insert key–value pair into dictionary
[{mydictname} << /TheKey 366 >> /PUT pdfmark
% insert string into stream object
[{mystreamname} (any string) /PUT pdfmark
% Use predefined named objects
% insert key–value pair into Catalog
[{Catalog} << /Answer 42 >> /PUT pdfmark
% insert key–value pair into Page 37’s dictionary
[{Page37} << /SpecialKey (special string) >> /PUT pdfmark
% insert key–value pair into the current page’s dictionary
[{ThisPage} << /NewKey (new string) >> /PUT pdfmark

Creating an annotation as a named object and adding content to it

% create text annotation
[/_objdef {MikesAnnot} /Contents (a simple text annot)

/Rect [100 100 200 200] /Subtype /Text /ANN pdfmark
% add another key to this text annotation
[{MikesAnnot} << /AnotherKey (another string value) >> /PUT pdfmark

Using a named object as a value

This example creates a text annotation on the current page with extra keys in the
annotation dictionary. These keys, MyPrivateAnnotArrayData and MyPrivateAnnotDictData,
have values that are indirect references to the array and dictionary objects created by the
previous pdfmark entries.

[/_objdef {myarray} /type /array /OBJ pdfmark
[/_objdef {mydict} /type /dict /OBJ pdfmark
[/MyPrivateAnnotArrayData {myarray}

/MyPrivateAnnotDictData {mydict}
/SubType /Text

pdfmark Reference Manual 67

Examples
Named Objects

5

/Rect [500 500 550 550]
/Contents (Here is a text annotation)
/ANN pdfmark

Putting a file’s contents into a text annotation

/F (file's platform dependent path name) (r) file def
[/_objdef {mystream} /type /stream /OBJ pdfmark
[{mystream} F /PUT pdfmark
[/MyPrivateAnnotmyStreamData {mystream}

/SubType /Text
/Rect [500 500 550 550]
/Contents (Here is a text annotation)
/ANN pdfmark

Using OBJ to add an open action to a PDF File

% Go to the 5th page of a document upon opening it.
% First and third lines can be reused.
% Second line specifies the GoTo action, which can be customized easily.
[/_objdef {MyAction} /type /dict /OBJ pdfmark
[{MyAction} << /S /GoTo /D [{Page5} /FitH 770] >> /PUT pdfmark
[{Catalog} << /OpenAction {MyAction} >> /PUT pdfmark

Using OBJ to create a base URI

% Create a dictionary object
[/_objdef {myURIdict} /type /dict /OBJ pdfmark
% Add a "Base" key-value pair to the dictionary we just created
[{myURIdict} << /Base (http://www.adobe.com) >> /PUT pdfmark
% Add our dictionary to the PDF file’s Catalog dictionary
[{Catalog} << /URI {myURIdict} >> /PUT pdfmark

Using OBJ and PUT pdfmarks to create an alternate image

This example shows how to create alternate images. In this case, we create an image that
has one Alternate. The Alternate is stored as a JPEG file on a web server, and is the default
image used when printing.

% Give the next image a name, so we can add an Alternates array to it later
[/_objdef {myImage} /NI pdfmark
% Create the base image (just a 2x1 pixel grayscale image for this sample)
<<
/Width 2
/Height 1
/ImageMatrix [1 0 0 1 0 0]
/ImageType 1
/Decode [0 1]
/BitsPerComponent 8
/DataSource (1Z)
>> image

Examples
Using the Graphics Encapsulation pdfmark Names (BP, EP, SP)

5

68 pdfmark Reference Manual

% Create a stream for the Alternate Image
[/_objdef {myPrintingImageStream} /type /stream /OBJ pdfmark
% Add the necessary key-value pairs to the stream dictionary to make it a
% valid image XObject.
% This particular image XObject uses the external streams capability of PDF
% to point to an image stored on an IIP server, retrieving it as a JPEG file.
% Since all stream data is stored on a web server, we don’t explicitly add
% data to the stream. As a result, the stream ends up with a length of zero,
% which is OK for external streams.
[{myPrintingImageStream}

<<
/Type /XObject /Subtype /Image /Width 150 /Height 150
/FFilter /DCTDecode /ColorSpace /DeviceRGB /BitsPerComponent 8
/F << /FS /URL /F (http://www.mycompany.com/myfile.jpg) >>

 >>
/PUT pdfmark

% Add an Alternates array to the base image
[{myImage}

<<
/Alternates

[<</Image {myPrintingImageStream} /DefaultForPrinting true >>]
>>

/PUT pdfmark

There are two possibilities for alternate images:

● Alternate image data is outside of PDF file

● Alternate image data inside PDF file

The above sample shows only how to construct the first type. Note also that if the Alternate
uses a different color space than the base image, it is possible that the PDF file may not
contain the appropriate ProcSet references in the Resources dictionary to print the page to
PostScript. For example, if the base image is grayscale and the Alternate is DeviceRGB, it is
likely that the page’s Resources contains only the ImageB procset (for grayscale images)
and not the ImageC procset (for color images).

Using the Graphics Encapsulation pdfmark Names (BP, EP, SP)

Creating a picture

This PostScript language sample draws a gray rectangle, then builds a picture enclosed by
the BP and EP pdfmarks. (The picture is simply an X.) It shows the picture in three places on
the page using the SP pdfmark, then draws another gray rectangle.

% draw a gray rectangle
0.5 setgray
0 0 100 100 rectfill

% create a picture
[/BBox [0 0 100 100] /_objdef {MyPicture} /BP pdfmark
0 setgray

pdfmark Reference Manual 69

Examples
Using the Graphics Encapsulation pdfmark Names (BP, EP, SP)

5

0 0 moveto 100 100 lineto stroke
100 0 moveto 0 100 lineto stroke
[/EP pdfmark

% make the picture appear on the page
[{MyPicture} /SP pdfmark

% make the picture appear in another place on the page
gsave
200 200 translate
[{MyPicture} /SP pdfmark
grestore

% make the picture appear in another place on the page at a different size
gsave
100 400 translate
.5 .5 scale
[{MyPicture} /SP pdfmark
grestore

% draw another gray rectangle
0.5 setgray
512 692 100 100 rectfill showpage

The resulting page stream in the PDF file contains the following:

0.5 g
0 0 100 100 re f
q 1 0 0 1 0 0 cm /Fm1 Do Q
q 1 0 0 1 200 200 cm /Fm1 Do Q
q 0.5 0 0 0.5 100 400 cm /Fm1 Do Q
512 692 100 100 re f

The graphics between the BP and the EP pdfmarks have been saved in a Form object, which
has this stream:

0 g
0 0 m
100 100 l
100 0 m
0 100 l
S

The resulting page looks like this:

Examples
Using the Graphics Encapsulation pdfmark Names (BP, EP, SP)

5

70 pdfmark Reference Manual

Using BP and EP pdfmarks to define button faces for forms

These examples illustrate how to use encapsulated graphics in forms. (See “Structure
Examples” on page 76 for more information on forms). Note that the definition of ?pdfmark
is that as defined in Chapter 1.

This code defines common objects that can be used used by widgets for forms.

% AcroForm Begin
[/BBox [0 0 100 100] /_objdef {Check} /BP pdfmark

{0 0 1 setrgbcolor /ZapfDingbats 119 selectfont 0 7 moveto (4) show}
?pdfmark
[/EP pdfmark

[/BBox [0 0 100 100] /_objdef {Cross} /BP pdfmark
{0 0 1 setrgbcolor /ZapfDingbats 119 selectfont 9.7 7.3 moveto (8) show}

?pdfmark
[/EP pdfmark

% Up/Down button appearances
[/BBox [0 0 200 100] /_objdef {Up} /BP pdfmark

{
0.3 setgray 0 0 200 100 rectfill 1 setgray 2 2 moveto
2 98 lineto 198 98 lineto 196 96 lineto 4 96 lineto 4 4 lineto fill
0.34 setgray 198 98 moveto
198 2 lineto 2 2 lineto 4 4 lineto 196 4 lineto 196 96 lineto fill
0 setgray 8 22.5 moveto 1 0 0 setrgbcolor /Helvetica 72 selectfont (Up) show
}

if
[/EP pdfmark

pdfmark Reference Manual 71

Examples
Forms Examples

5

[/BBox [0 0 200 100] /_objdef {Down} /BP pdfmark
{
0.7 setgray 0 0 200 100 rectfill 1 setgray 2 2 moveto
2 98 lineto 198 98 lineto 196 96 lineto 4 96 lineto 4 4 lineto fill
0.34 setgray 198 98 moveto
198 2 lineto 2 2 lineto 4 4 lineto 196 4 lineto 196 96 lineto fill
0 setgray 8 22.5 moveto 0 0 1 setrgbcolor /Helvetica 72 selectfont (Down) show
}

?pdfmark
[/EP pdfmark
% Submit button appearances
[/BBox [0 0 250 100] /_objdef {Submit} /BP pdfmark

{
0.6 setgray 0 0 250 100 rectfill 1 setgray 2 2 moveto
2 98 lineto 248 98 lineto 246 96 lineto 4 96 lineto 4 4 lineto fill
0.34 setgray 248 98 moveto
248 2 lineto 2 2 lineto 4 4 lineto 246 4 lineto 246 96 lineto fill
/Helvetica 76 selectfont 0 setgray 8 22.5 moveto (Submit) show
}

?pdfmark
[/EP pdfmark

[/BBox [0 0 250 100] /_objdef {SubmitP} /BP pdfmark
{
0.6 setgray 0 0 250 100 rectfill 0.34 setgray 2 2 moveto
2 98 lineto 248 98 lineto 246 96 lineto 4 96 lineto 4 4 lineto fill
1 setgray 248 98 moveto
248 2 lineto 2 2 lineto 4 4 lineto 246 4 lineto 246 96 lineto fill
/Helvetica 76 selectfont 0 setgray 10 20.5 moveto (Submit) show
}

?pdfmark
[/EP pdfmark

Forms Examples

This examples in this section show how to use the Forms pdfmark suite.

Define the AcroForm dictionary at the document Catalog

The AcroForm dictionary includes these required entries (see Section 8.6 of the PDF
Reference for more information):

● Fields (the array from where all widgets in the form can be found)

● DA (Default Appearance)

● DR (Default Resources)

● NeedAppearances boolean, set to true to indicate that when the document is opened,
traverse all widgets to generate their display and add them to the Fields array.

Examples
Forms Examples

5

72 pdfmark Reference Manual

Also includes definition of common objects that are used by the widgets such as fonts,
encoding arrays, and Form XObjects for button faces.

[/_objdef {pdfDocEncoding} /type /dict /OBJ pdfmark
[{pdfDocEncoding}

<<
/Type /Encoding
/Differences

[
24 /breve /caron /circumflex /dotaccent /hungarumlaut /ogonek /ring

/tilde
39 /quotesingle
96 /grave
128 /bullet /dagger /daggerdbl /ellipsis /emdash /endash /florin

/fraction /guilsinglleft /guilsinglright /minus /perthousand
/quotedblbase /quotedblleft /quotedblright /quoteleft /quoteright
/quotesinglbase /trademark /fi /fl /Lslash /OE /Scaron /Ydieresis
/Zcaron /dotlessi /lslash /oe /scaron /zcaron

164 /currency
166 /brokenbar
168 /dieresis /copyright /ordfeminine
172 /logicalnot /.notdef /registered /macron /degree /plusminus

/twosuperior /threesuperior /acute /mu
183 /periodcentered /cedilla /onesuperior /ordmasculine
188 /onequarter /onehalf /threequarters
192 /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE

/Ccedilla /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute
/Icircumflex /Idieresis /Eth /Ntilde /Ograve /Oacute /Ocircumflex
/Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex
/Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex
/atilde /adieresis /aring /ae /ccedilla /egrave /eacute
/ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis
/eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis
/divide /oslash /ugrave /uacute /ucircumflex /udieresis /yacute
/thorn /ydieresis

]
>>

/PUT pdfmark

[/_objdef {ZaDb} /type /dict /OBJ pdfmark
[{ZaDb}
 <<

/Type /Font
/Subtype /Type1
/Name /ZaDb
/BaseFont /ZapfDingbats
>>

/PUT pdfmark

[/_objdef {Helv} /type /dict /OBJ pdfmark
[{Helv}

<<
/Type /Font
/Subtype /Type1
/Name /Helv
/BaseFont /Helvetica

pdfmark Reference Manual 73

Examples
Forms Examples

5

/Encoding {pdfDocEncoding}
>>

/PUT pdfmark

[/_objdef {aform} /type /dict /OBJ pdfmark

% Define Fields array of Acroform dictionary. It will contain entries for
% each of the widgets defined below.
% NOTE: it is not necessary to explicitly assign the widget annotations
% to the Fields array; Acrobat does it automatically when the file is opened.

[/_objdef {afields} /type /array /OBJ pdfmark

[{aform}
<<
/Fields {afields}
/DR << /Font << /ZaDb {ZaDb} /Helv {Helv} >> >>
/DA (/Helv 0 Tf 0 g)
/NeedAppearances true
>>

/PUT pdfmark

% Put Acroform entry in catalog dictionary
[{Catalog} << /AcroForm {aform} >> /PUT pdfmark

Define the Widget annotations, which are also field dictionaries for this form

This is the collection of all individual widget annotations. It is possible to have multiple
instances of these sections, maybe defining a single widget on each instance.

[/Subtype /Widget
/Rect [216 647 361 684]
/F 4
/T (SL Text)
/FT /Tx
/DA (/Helv 14 Tf 0 0 1 rg)
/V (5)
/AA <<

/K << /S /JavaScript /JS (AFNumber_Keystroke\(2, 0, 0, 0, "$", true\);)>>
/F << /S /JavaScript /JS (AFNumber_Format\(2, 0, 0, 0, "$", true\); >>
>>

/ANN pdfmark

[/Subtype /Widget
/Rect [216 503 361 612]
/F 4
/T (Ping Result)
/FT /Tx
/DA (/Helv 0 Tf 0 0 1 rg)
/Ff 4096
/ANN pdfmark

[/Subtype /Widget

Examples
Forms Examples

5

74 pdfmark Reference Manual

/Rect [216 432 252 468]
/F 4
/T (Check Box)
/FT /Btn
/DA (/ZaDb 0 Tf 0 g)
/AS /Off
/MK << /CA (4)>>
/AP << /N << /Oui /null >> >>
/ANN pdfmark

[/Subtype /Widget
/Rect [216 360 252 396]
/F 4
/T (Radio)
/FT /Btn
/DA (/ZaDb 0 Tf 0 g)
/Ff 49152
/AS /Off
/MK << /CA (8)>>
/AP << /N << /V1 /null >> >>
/ANN pdfmark

[/Subtype /Widget
/Rect [261 360 297 396]
/F 4
/T (Radio)
/FT /Btn
/DA (/ZaDb 0 Tf 0 g)
/Ff 49152
/AS /Off
/MK << /CA (8)>>
/AP << /N << /V2 /null >> >>
/ANN pdfmark

[/Subtype /Widget
/Rect [306 360 342 396]
/F 4
/T (Radio)
/FT /Btn
/DA (/ZaDb 0 Tf 0 g)
/Ff 49152
/AS /Off
/MK << /CA (8)>>
/AP << /N << /V3 /null >> >>
/ANN pdfmark

[/Subtype /Widget
/Rect [351 360 387 396]
/F 4
/T (Radio)
/FT /Btn
/DA (/ZaDb 0 Tf 0 g)
/Ff 49152
/AS /Off
/MK << /CA (8)>>

pdfmark Reference Manual 75

Examples
Forms Examples

5

/AP << /N << /V4 /null >> >>
/ANN pdfmark

[/Subtype /Widget
/Rect [216 287 361 324]
/F 4
/T (Pop Down)
/FT /Ch
/Ff 131072
/Opt [[(1)(First)] [(2)(Second)] [(3)(Third)] [(4)(Fourth)] [(5)(Fifth)]]
/DV (5)
/V (5)
/DA (/TiIt 18 Tf 0 0 1 rg)
/ANN pdfmark

[/Subtype /Widget
/Rect [216 215 361 252]
/F 4
/T (Combo)
/FT /Ch
/Ff 917504
/Opt [(Black)(Blue)(Green)(Pink)(Red)(White)]
/DA (/TiRo 18 Tf 0 g)
/V (Black)
/DV (Black)
/ANN pdfmark

[/Subtype /Widget
/Rect [216 107 253 180]
/F 4
/T (ListBox)
/FT /Ch
/DA (/Helv 10 Tf 1 0 0 rg)
/Opt [(1)(2)(3)(4)(5)]
/DV (3)
/V (3)
/ANN pdfmark

% Example of how the /MK dictionary is used.
% Notice that the text will be shown upside-down (180 degree rotation).
[/Subtype /Widget

/Rect [430 110 570 150]
/F 4
/T (Clear)
/FT /Btn
/H /P
/DA (/HeBo 18 Tf 0 0 1 rg)
/Ff 65536
/MK <<

/BC [1 0 0]
/BG [0.75 0.45 0.75]
/CA (Clear)
/AC (Done!)
/R 180

>>

Examples
Structure Examples

5

76 pdfmark Reference Manual

/BS <<
/W 3
/S /I
>>

/A << /S /ResetForm >>
/ANN pdfmark

Structure Examples

This section gives examples illustrating various uses of the structure pdfmark suite.
Example shows an entire structure tree, consisting of one section containing two
paragraphs. It illustrates both how to create the tree structure and how the structure is
related to the page content of the PDF file. Example shows the parts of the output PDF file
that result from the PostScript language code.

A simple structure

This example has one section with two paragraphs, all on one page.

% On the first page:

% Start a section with the unnamed Structure Tree as parent.
% Push the Section element onto the implicit parent stack as
% current implicit parent.
[/Subtype /Section /StPNE pdfmark

% Start a paragraph with the Section as impicit parent.
% Push the Paragraph element on top of the implicit parent
% stack as the current implicit parent.
[/Subtype /P /StPNE pdfmark

% Begin the marked content holding the text of the
% first paragraph. It is implicitly added to the Paragraph
% element.
[/StBMC pdfmark
% [PostScript code for the contents of the first paragraph
% goes here.]

% End the marked content holding the text of the first
% paragraph.
[/EMC pdfmark

% Pop the Paragraph element off the implicit parent stack.
% This exposes the Section element as implicit parent again.
[/StPop pdfmark

% And now for the second paragraph:
[/Subtype /P /StPNE pdfmark

[/StBMC pdfmark
% PostScript code for the contents of the second paragraph goes here.

pdfmark Reference Manual 77

Examples
Structure Examples

5

[/EMC pdfmark

% We're being tidy by popping both the second Paragraph
% element and the Section element off the stack. We could have
% left everything hanging at the end of the document, or used
% [/StPopAll pdfmark instead.

[/StPop pdfmark
[/StPop pdfmark

PDF output resulting from code in previous section

This example is for illustration purposes only. The PDF code actually produced by Adobe
Acrobat Distiller would not include comments and would differ in other ways.

% In the Catalog dictionary, under the key StructTreeRoot,
% the following dictionary is entered as object 3 0:
3 0 obj
<</Type /StructTreeRoot
% The Section element is the only child.
/K [4 0 R]
/ParentTree 100 0 R
>> endobj

% The number tree that locates structure parents of marked content.
100 0 obj
<</Nums [0 101 0 R]
>>
endobj

% Structure parents for page 1.
101 0 obj
[5 0 R 6 0 R]
endobj
% End of parent tree objects.
% As object 4 0, the following dictionary represents the
% Section element:
4 0 obj
<</Type /StructElement
/S /Section
% Parent link, refers back to the dictionary representing the
% Structure Tree Root.
/P 3 0 R
% The Section element has two Paragraph elements as children.
/K [5 0 R 6 0 R]
>> endobj

% Object 5 0, the first Paragraph element
5 0 obj
<</Type /StructElement
/S /P
/P 4 0 R
% Page in whose content stream integer Marked Content ID’s denote Kids
/Pg 10 0 R

Examples
Structure Examples

5

78 pdfmark Reference Manual

/K [0]
>> endobj

% Object 6 0, the second Paragraph element
6 0 obj
<</Type /StructElement
/S /P
/P 4 0 R
% Page in whose content stream integer Marked Content ID’s denote Kids
/Pg 10 0 R
/K [1]
>> endobj

% Object 10 0, the Page object for the page on which both
% paragraphs are marked. Only the relevant entries in the
% dictionary are shown.
% The Resources dictionary of the Contents stream of the page.
<</StructParents 0
>>
% Inside the Contents stream of the page.
/P <</MCID 0>> BDC
% [Paragraph 1 content marking goes here.]
EMC
/P <</MCID 1>> BDC
% [Paragraph 2 content marking goes here]
EMC

A bookmark for a structural element

[other /StPNE key-value pairs
/Bookmark

<<
/Title (an element in my structure)
/Open true
>>

/StPNE pdfmark

Interrupted structure

This example shows a paragraph that is graphically interrupted by a table. The originating
application has chosen to write out the PostScript in graphical order, but logically the
paragraph is one element and the table is another. To further complicate matters, the
document contains a special element that is a list of tables.

% Start a ListOfTables element directly under the Structure
% Tree Root. Give it an object name for later reference.
[/_objdef {LOT} /Subtype /ListOfTables /StPNE pdfmark

% Pop it off the stack so that the next element becomes a
% child of the Structure Tree Root.
[/StPop pdfmark

% Start the page with the section on it.

pdfmark Reference Manual 79

Examples
Structure Examples

5

% Start the section, also making it the default parent element.
[/Subtype /Section /StPNE pdfmark

% Start the paragraph.
[/Subtype /P /StPNE pdfmark

% Here comes the portion of the paragraph before the table
[/StBMC pdfmark

% [code to write the first portion of the paragraph goes here]

[/EMC pdfmark

% Now we’re interrupted by a table that doesn’t belong to the
% paragraph. Save the context as a conservative move because
% we don’t want to worry about what the table code does to the
% implicit parent stack.
[/StoreName /S1 /StStore pdfmark

% The table is an element, and it contains cells as child elements.
[/E {LOT} /StPush pdfmark
[/Subtype /Table /StPNE pdfmark

% ... code to draw the table and establish its logical substructure here ...

% Pop the table and the List of Tables off the implicit parent stack.
[/StPop pdfmark
[/StPop pdfmark

% Resume the paragraph. It turns out that the table code was
% tidy, but it’s probably a good thing that we didn’t count on
% it. Get the implicit parent stack back into a known state.
[/StoreName /S1 /StRetrieve pdfmark

[/StBMC pdfmark

% ... code to write the second portion of the paragraph ...

[/EMC pdfmark

% Pop the Paragraph and Section elements and the Structure
% Tree Root off the stack.
[/StPop pdfmark
[/StPop pdfmark
[/StPop pdfmark

Independence of logical and physical structure

This example shows that the logical structure and the physical nesting of marked content
can have different tree structures. In this example there are again two Structure Trees. One
is the usual hierarchical structure of the document; the other is a list of funny words that
occur within the document. The words occur as nested marked content within the marked

Examples
Structure Examples

5

80 pdfmark Reference Manual

content forming the contents of a paragraph, but the words become the content of
elements in a separate branch of the structure tree from the Paragraph elements.

% Set up a List element to hold the Funny Word List.
[/_objdef {FWL}/Subtype /List /Title (Funny Words) /StPNE pdfmark

[/StPop pdfmark

[/Subtype /Section /StPNE pdfmark

[/Subtype /P /StPNE pdfmark

% Begin PostScript code for the paragraph
[/StBMC pdfmark
(John was thrilled to find some) show
% Here’s an occurrence of a funny word coming up.
% Start an element for the funny word list...
[/E {FWL} /StPush pdfmark
[/Subtype /Word /StPNE pdfmark
% Fill that element with the funny word from the
% page content. This content is still in the
% marked content within the paragraph element.
[/StBMC pdfmark
(puccoon) show
[/EMC pdfmark
% Pop the Word element off the implicit parent stack.
[/StPop pdfmark
% Resume paragraph content that’s not in the funny word
% (, not knowing that it could also be called)
% ... another funny word ...
[/E {FWL} /StPush pdfmark
[/Subtype /Word /StPNE pdfmark
[/StBMC pdfmark
(gromwell) show
[/EMC pdfmark
[/StPop pdfmark
(.) show
% Close off the marked content for the paragraph...
[/EMC pdfmark
% ...and tidy up the stack
[/StPop pdfmark
[/StPop pdfmark
[/StPop pdfmark

Page break within logical structure

This shows how to handle logical structure spanning more than one page. The example
shows a logical paragraph spanning a page break.

%%Page: 1 1

% Begin a Paragraph element
[/Subtype /P /StPNE pdfmark

[/StBMC pdfmark

pdfmark Reference Manual 81

Examples
Structure Examples

5

% ... write the portion of the paragraph that’s on Page 1 ...
[/EMC pdfmark
showpage

%%Page: 2 2

% The Paragraph element is still on the top of the stack, so
% we can just add some more content to it implicitly.
[/StBMC pdfmark
% ... write the portion of the paragraph that’s on Page 2 ...
[/EMC pdfmark

Logical Structure Out-of-order in Physical Structure

This example shows how to build a logical structure whose elements appear in a different
physical order in the document from their logical order. The example is based on a
magazine in which an opinion piece starting on the last inside page is continued on an
earlier page in the printing order.

%%Page 5 5
[/Subtype /Section /ID (ID string) /StPNE pdfmark

% This Paragraph element is actually a later paragraph within
% the Section element than the Paragraph element that appears
% on the next page.
[/Subtype /P /StPNE pdfmark

% No /At key, so defaults to being inserted
% as last child of its parent.

[/StBMC pdfmark
% ... draw the paragraph...
[/EMC pdfmark

% ... the rest of the page ...
showpage

% Pop the Paragraph element off the stack
[/StPop pdfmark
%%Page 6 6

[/Subtype /P /At 0 /StPNE pdfmark
% Insert as first child of parent.

[/StBMC pdfmark
% ... draw the paragraph...
[/EMC pdfmark

% Pop the Paragraph and Section elements off the stack
[/StPop pdfmark
[/StPop pdfmark

Examples
Tagged PDF

5

82 pdfmark Reference Manual

Tagged PDF

This is a sample PostScript file that illustrates the use of tagged PDF. It is included on the
Acrobat SDK as the file Sample1.ps.

%!PS-Adobe-3.0
%%Title: Sample1

% There are three things that should be added to this example:
% 1. A small table (just 2 row, three column)
% 2. A figure (either standalone, or actually embedded in the text)
% 3. If possible, the encoding of a font so that the soft hyphen really works
% without the "actual text"

[/Creator (Hand Created)
/CreationDate (D:20010508130548)
/ModDate (D:20010508145339)
/Author (Adobe Developer)
/Title (Sample Document 1 for tagged PDF creation)
/Subject (A base document for the creation of some simple PostScript and

PDFMarks to show tagged PDF)
/Session (Tagged PDF Dev Tech Seminar)
/Purpose (Demonstration)
/DOCINFO pdfmark

[{Catalog} <</MarkInfo <</Marked true>>>> /PUT pdfmark

%% Layout class for documenttitle below
[/_objdef {C1} /type /dict /OBJ pdfmark
[{C1} <</O /Layout /SpaceAfter 10 /SpaceBefore 10 /TextAlign /Center>>

/PUT pdfmark
[/CM1 {C1} /StClassMap pdfmark

%% Layout class for topichead
[/_objdef {C2} /type /dict /OBJ pdfmark
[{C2} <</O /Layout /SpaceAfter 5 /SpaceBefore 5 /TextAlign /Left>>

/PUT pdfmark
[/CM2 {C2} /StClassMap pdfmark

%% Layout class for topichead2
[/_objdef {C3} /type /dict /OBJ pdfmark
[{C3} <</O /Layout /SpaceAfter 3 /SpaceBefore 3 /TextAlign /Left>>

/PUT pdfmark
[/CM3 {C3} /StClassMap pdfmark

%% Layout class for p
[/_objdef {C4} /type /dict /OBJ pdfmark
[{C4} <</O /Layout /SpaceAfter 1 /SpaceBefore 3 /TextAlign /Left>>

/PUT pdfmark
[/CM4 {C4} /StClassMap pdfmark

[/Subtype /document /Lang (en-US) /StPNE pdfmark

[/_objdef {dta1} /type /dict /OBJ pdfmark

pdfmark Reference Manual 83

Examples
Tagged PDF

5

[{dta1} <</O /XML-1.00 /Author (Joe)>> /PUT pdfmark
[/Subtype /documenttitle /Class /CM1 /StPNE pdfmark
[/Obj {dta1} /StAttr pdfmark

[/StBMC pdfmark

/Helvetica-Bold findfont 24 scalefont setfont
216 720 moveto
(Title of Document) show

[/EMC pdfmark
[/StPop pdfmark

[/Subtype /topic /StPNE pdfmark
[/Subtype /topichead /Class /CM2 /StPNE pdfmark
[/StBMC pdfmark

/Helvetica-Bold findfont 18 scalefont setfont
72 690 moveto
(First Topic) show

[/EMC pdfmark
[/StPop pdfmark

[/Subtype /p /Class /CM4 /StPNE pdfmark
[/StBMC pdfmark

/Helvetica findfont 12 scalefont setfont
72 674 moveto
(Some text in a paragraph in the first topic. These lines may not be justified,
but are illustrative.) show

[/EMC pdfmark
[/StPop pdfmark
[/StPop pdfmark

[/Subtype /topic /StPNE pdfmark
[/Subtype /topichead /Class /CM2 /StPNE pdfmark
[/StBMC pdfmark

/Helvetica-Bold findfont 18 scalefont setfont
72 648 moveto
(Second Topic) show

[/EMC pdfmark
[/StPop pdfmark
[/Subtype /p /Class /CM4 /StPNE pdfmark
[/StBMC pdfmark

/Helvetica findfont 12 scalefont setfont
72 632 moveto
(This is a paragraph of text in the second topic.) show

[/EMC pdfmark
[/Subtype /emph /StPNE pdfmark

Examples
Tagged PDF

5

84 pdfmark Reference Manual

[/StBMC pdfmark

/Helvetica-Oblique findfont 12 scalefont setfont
(Emphasized) show

[/EMC pdfmark
[/StPop pdfmark
[/StBMC pdfmark

/Helvetica findfont 12 scalefont setfont
(words) show

72 618 moveto
(here.) show

[/EMC pdfmark
[/StPop pdfmark

[/Subtype /topic /StPNE pdfmark
[/Subtype /topichead2 /Class /CM3 /StPNE pdfmark

[/StBMC pdfmark

/Helvetica-Bold findfont 14 scalefont setfont
72 596 moveto
(Subtopic of second topic) show

[/EMC pdfmark
[/StPop pdfmark

[/Subtype /p /Class /CM4 /StPNE pdfmark
[/StBMC pdfmark

/Helvetica findfont 12 scalefont setfont
72 580 moveto
(This paragraph of text is the second topic, first subtopic.) show
72 566 moveto
(Hyphenated words make up this para) show

[/EMC pdfmark
[/Subtype /Span /ActualText <FEFF00AD> /StPNE pdfmark
[/StBMC pdfmark

(-) show
[/EMC pdfmark
[/StPop pdfmark
[/StBMC pdfmark

72 552 moveto
(graph also.) show

[/EMC pdfmark
[/StPop pdfmark
[/StPop pdfmark
[/StPop pdfmark

pdfmark Reference Manual 85

Examples
Tagged PDF

5

% And now we put in another topic with line numbers

[/Subtype /topic /StPNE pdfmark
[/Subtype /topichead /Class /CM2 /StPNE pdfmark
[/StBMC pdfmark

/Helvetica-Bold findfont 18 scalefont setfont
72 510 moveto
(Line Numbered Topic) show

[/EMC pdfmark
[/StPop pdfmark

[/Subtype /p /Class /CM4 /StPNE pdfmark

/Helvetica findfont 12 scalefont setfont
[/Artifact <</Type /Layout>> /BDC pdfmark
48 494 moveto (1) show

[/EMC pdfmark
[/StBMC pdfmark

72 494 moveto
(This is some text such as would appear in a legal bill.) show

[/EMC pdfmark
[/Artifact <</Type /Layout>> /BDC pdfmark

48 478 moveto (2) show

[/EMC pdfmark
[/StBMC pdfmark

72 478 moveto
(Note that this text has line numbers, but that) show

[/EMC pdfmark
[/Artifact <</Type /Layout>> /BDC pdfmark

48 464 moveto (3) show

[/EMC pdfmark
[/StBMC pdfmark

72 464 moveto
(the numbers disappear when you reflow) show

[/EMC pdfmark
[/Artifact <</Type /Layout>> /BDC pdfmark

48 450 moveto (4) show

[/EMC pdfmark

Examples
Tagged PDF

5

86 pdfmark Reference Manual

[/StBMC pdfmark

72 450 moveto
(the text our save the text as XML.) show

[/EMC pdfmark
[/StPop pdfmark
[/StPop pdfmark

[/StPop pdfmark

% Now that the text is done, let's make the outlines
% The first bookmark magnifies 400 percent, while the others go to their
% line in the text
[/Count 4 /Page 1 /View [/XYZ 216 744 4.0] /Title (Title of Document)

/OUT pdfmark
[/Page 1 /View [/XYZ 0 704 1.0] /Title (First Topic) /OUT pdfmark
[/Count -1 /Page 1 /View [/XYZ 0 662 1.0] /Title (Second Topic) /OUT pdfmark
[/Page 1 /View [/XYZ 0 610 1.0] /Title (Subtopic of second Topic) /OUT pdfmark
[/Page 1 /View [/XYZ 0 530 1.0] /Title (Line Numbered Topic) /OUT pdfmark

[/PageMode /UseOutlines /Page 1 /View [/XYZ null null null] /DOCVIEW pdfmark

% And finally the rolemap, with every tag that I have used defined.
[/document /Document

/documenttitle /H
/p /P
/emph /Span
/topic /Div
/topic2 /Div
/topichead /H1
/topichead2 /H2
/StRoleMap pdfmark

showpage
(%%[Page: 1]%%) =

pdfmark Reference Manual 87

A
pdfmark for JDF

The use of pdfmark in PostScript has been expanded to include representations of JDF
features. JDF is an extensible XML-based job ticketing format designed for use bythe
printing industry. Information about JDF can be obtained from http://www.cip4.org.

In particular, pdfmark for JDF (henceforth called JDF pdfmark) allows the PostScript
file/stream to specify elements and attributes to be added to a JDF document being used
for a job. Applications that support JDF pdfmark include Acrobat Distiller 6.0. See the
document Acrobat Distiller Parameters (technical note 5151) for further information about
Distiller.

Syntax

The syntax for the JDF pdfmark operator is as follows:

[/Attribute string
/Value string
/Subtype /CreateAttribute
/JDF pdfmark

Where the Attribute and Value keys are as described in Table A.1. Also, Table A.2 presents examples
of XPath expressions.

TABLE A.1 Keys supported by JDF pdfmark

Key Type Semantics

Attribute string An XPath expression that identifies the location of the attribute
absolutely from the root of the JDF. If any portion of the hierarchy of
elements containing the attribute is not present in the JDF, they are
created. XPath is a language for addressing parts of an XML
document, as defined in XML Path Language (XPath) Version1.0,
which is available from http://www.w3.org/TR/xpath.
JDF pdfmark supports the following subset of XPath expressions:

Expression ::= JDFRoot’/’Attribute | JDFRoot’/’Children’/’Attribute
JDFRoot ::= ‘//JDF’
Children ::= Element | Element’/’Children
Element ::= element | element’[‘FilterExpression’]’
FilterExpression ::=
Filter | Filter ‘and’ FilterExpression | Filter ‘or’ FilterExpression
Filter ::= Attribute’=’Value
Attribute ::= ‘@’attribute

Value string The value to be assigned to the attribute, using the XPath
expression:

Value ::= ‘ “ ’value’ ” ’

http://www.cip4.org
http://www.w3.org/TR/xpath

pdfmark for JDFA

88 pdfmark Reference Manual

N O T E : In actual use, all XPath expressions should end with @attribute because they must
define the location of an attribute.

The JDF pdfmark commands shown in Example A.1 cause supporting applications to
modify the current JDF document as illustrated in Example A.2.

EXAMPLE A.1 Using JDF pdfmark to set Trapping element and subelement attributes

[/Attribute (//JDF/JDF[@Type="Trapping"]/@Type)
/Value (Trapping)
/Subtype /CreateAttribute /JDF pdfmark

[/Attribute
(//JDF/JDF[@Type="Trapping"]/ResourceLinkPool/TrappingDetailsLink/@rRef)
/Value (TD1)
/Subtype /CreateAttribute /JDF pdfmark

[/Attribute
(//JDF/JDF[@Type="Trapping"]/ResourceLinkPool/TrappingDetailsLink[@rRef="TD1"]/@Usage)
/Value (Input)
/Subtype /CreateAttribute /JDF pdfmark

TABLE A.2 Examples of XPath expressions

Expression Interpretation

//JDF/@JobID Selects the JobID attribute in root JDF node

//JDF/JDFResourceLinkPool
/ComponentLink/@rRef

Selects the rRef attribute of the ComponentLink found
in the ResourcePool in the root JDF node

//JDF/JDF[@Type="Trapping"]/@Status Selects the Status attribute of the Trapping node that
is a child of the root JDF node

//JDF/JDFResourceLinkPool
/ComponentLink[@Usage=”Output” and
@ProcessUsage=”Good”]/@rRef

First identifies the ResourceLinkPool of the root JDF
node. It then selects the rRef attribute of the
ComponentLink with both a Usage attribute value
“Output” and a ProcessUsage attribute with value
“Good”

pdfmark Reference Manual 89

pdfmark for JDF A

EXAMPLE A.2 JDF structure created through JDF pdfmark in Example A.1

JDFRoot

JDF

Type = “Trapping”

TrappingDetailsLink

rRef = “TD1”

Usage=”Input”

ResourceLinkPool

	pdfmark Reference Manual
	Contents
	Preface
	Purpose
	Audience
	Contents
	Other Useful Documentation

	pdfmark Syntax and Use
	What is the pdfmark Operator?
	Syntax of the pdfmark Operator
	Using pdfmark with Standard PostScript Interpreters
	Syntax for Private Keys
	Named Objects
	Built-In Named Objects
	User-Defined Named Objects
	Namespaces
	Adding Content to Named Objects

	Basic pdfmark Features
	Annotations (ANN)
	Notes
	Links
	Other Annotations

	Bookmarks (OUT)
	Articles (ARTICLE)
	Page Cropping (PAGES, PAGE)
	Info Dictionary (DOCINFO)
	Document Open Options (DOCVIEW)
	Page Label and Plate Color (PAGELABEL)
	Marked Content (MP, DP, BMC, BDC, EMC)
	Marked-Content Points
	Marked-content sequences

	Naming Graphics (BP, EP, SP)
	Naming Images (NI)
	Transparency (SetTransparency)
	Transparency Group XObject and Soft Mask

	Add Metadata to the Catalog (Metadata)
	Embedded File Content (EMBED)
	Compatibility Notes
	Old-style Links (LNK)
	Pass-through PostScript Commands (PS)

	Specifying Actions and Destinations
	Actions
	GoTo Actions
	GotoR Actions
	Launch Actions
	Article Actions

	Destinations
	View Destinations
	Defining Named Destinations
	Referencing Named Destinations

	Logical Structure
	Elements and Parents
	Structure Operators
	Structure Tree Root
	StRoleMap
	StClassMap

	Elements
	StPNE
	StBookmarkRoot
	StPush
	StPop
	StPopAll
	StUpdate

	Specifying Element Content
	StBMC
	StBDC
	EMC
	StOBJ

	Attribute Objects
	StAttr

	Storing and Retrieving the Implicit Parent Stack
	StStore
	StRetrieve

	EPS Considerations
	Tagged PDF

	Examples
	Ignore pdfmark if not defined in the PostScript interpreter
	Notes
	Simple note
	Fancy note
	Private Data in Note

	Links
	Simple Link (old style, compatible with all Distiller application versions)
	Link
	Fancy link
	Link that launches another file
	Custom link action (URI link for the Acrobat WebLink plug-in)
	Custom link action (named action)
	Custom annotation type
	Movie annotation

	Bookmarks
	Articles
	Article action
	Create text for the article “Now is the Time”
	Article containing two beads

	Page Cropping
	Crop this page
	Crop all pages

	Info Dictionary
	File Open Action
	Page Label
	Named Destinations
	Definition of named destination
	Link to a named destination

	Named Objects
	Creating user-defined named objects
	Adding values to named objects
	Creating an annotation as a named object and adding content to it
	Using a named object as a value
	Putting a file’s contents into a text annotation
	Using OBJ to add an open action to a PDF File
	Using OBJ to create a base URI
	Using OBJ and PUT pdfmarks to create an alternate image

	Using the Graphics Encapsulation pdfmark Names (BP, EP, SP)
	Creating a picture
	Using BP and EP pdfmarks to define button faces for forms

	Forms Examples
	Define the AcroForm dictionary at the document Catalog
	Define the Widget annotations, which are also field dictionaries for this form

	Structure Examples
	A simple structure
	PDF output resulting from code in previous section
	A bookmark for a structural element
	Interrupted structure
	Independence of logical and physical structure
	Page break within logical structure
	Logical Structure Out-of-order in Physical Structure

	Tagged PDF

	pdfmark for JDF

